CircCDR1 sponges miR-1290 to regulate cell proliferation, migration, invasion, and apoptosis in esophageal squamous cell cancer. 2022

Yong Fang, and Jun Yin, and Yaxing Shen, and Hao Wang, and Han Tang, and Xiaosang Chen
Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.

Since circCDR1 was abnormally expressed in esophageal squamous cell cancer (ESCC), the current study explored whether circCDR1 affected ESCC. Detailedly, circCDR1 expression in ESCC and linear isoform and stability of circCDR1 were detected by RT-qPCR. The location of circCDR1 was detected by fluorescence in situ hybridization (FISH). After transfection, the cell biological functions were detected by wound-healing, CCK-8, colony formation, and flow cytometry assays. The target of circCDR1 was predicted by bioinformatics, FISH, RNA pull-down, and dual-luciferase reporter assays. The correlation between circCDR1 and miR-1290 was analyzed by Pearson's correlation analysis. A subcutaneous-xenotransplant tumor model in BALB/c nude mice was established and the levels of circCDR1, miR-1290, and apoptosis/metastasis/proliferation-related factors in the cancer cells and tissues were detected by immunohistochemical analysis, western blot, or RT-qPCR. As a result, circCDR1 was low-expressed in ESCC tissues and cells, while miR-1290 was high-expressed. CircCDR1 was regulated and was negatively correlated with miR-1290. CircCDR1, located in cytoplasm, inhibited the viability, proliferation, migration, and invasion of the cancer cells and the expressions of Bcl-2, N-cadherin, and Vimentin, but enhanced cell apoptosis and the expressions of C caspase-3, Bax, E-cadherin, IGFBP4, LHX6 and NFIX. In vivo, circCDR1 promoted xenotransplanted tumor weight and volume, and the expressions of C caspase-3 and Bax yet suppressed the levels of Bcl-2, miR-1290, and Ki-67 in tumor tissues. The effects of circCDR1 on both cancer cells and tissues were opposite to and reversed by miR-1290 mimic. Collectively, circCDR1 sponged miR-1290 to regulate the progression of ESCC both in vitro and in vivo.

UI MeSH Term Description Entries
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D009361 Neoplasm Invasiveness Ability of neoplasms to infiltrate and actively destroy surrounding tissue. Invasiveness, Neoplasm,Neoplasm Invasion,Invasion, Neoplasm
D002294 Carcinoma, Squamous Cell A carcinoma derived from stratified SQUAMOUS EPITHELIAL CELLS. It may also occur in sites where glandular or columnar epithelium is normally present. (From Stedman, 25th ed) Carcinoma, Epidermoid,Carcinoma, Planocellular,Carcinoma, Squamous,Squamous Cell Carcinoma,Carcinomas, Epidermoid,Carcinomas, Planocellular,Carcinomas, Squamous,Carcinomas, Squamous Cell,Epidermoid Carcinoma,Epidermoid Carcinomas,Planocellular Carcinoma,Planocellular Carcinomas,Squamous Carcinoma,Squamous Carcinomas,Squamous Cell Carcinomas
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004938 Esophageal Neoplasms Tumors or cancer of the ESOPHAGUS. Cancer of Esophagus,Esophageal Cancer,Cancer of the Esophagus,Esophagus Cancer,Esophagus Neoplasm,Neoplasms, Esophageal,Cancer, Esophageal,Cancer, Esophagus,Cancers, Esophageal,Cancers, Esophagus,Esophageal Cancers,Esophageal Neoplasm,Esophagus Cancers,Esophagus Neoplasms,Neoplasm, Esophageal,Neoplasm, Esophagus,Neoplasms, Esophagus
D000077277 Esophageal Squamous Cell Carcinoma A carcinoma that originates usually from cells on the surface of the middle and lower third of the ESOPHAGUS. Tumor cells exhibit typical squamous morphology and form large polypoid lesions. Mutations in RNF6, LZTS1, TGFBR2, DEC1, and WWOX1 genes are associated with this cancer. Oesophageal Squamous Cell Carcinoma
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015972 Gene Expression Regulation, Neoplastic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue. Neoplastic Gene Expression Regulation,Regulation of Gene Expression, Neoplastic,Regulation, Gene Expression, Neoplastic
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

Yong Fang, and Jun Yin, and Yaxing Shen, and Hao Wang, and Han Tang, and Xiaosang Chen
September 2019, Journal of cellular biochemistry,
Yong Fang, and Jun Yin, and Yaxing Shen, and Hao Wang, and Han Tang, and Xiaosang Chen
March 2024, International immunopharmacology,
Yong Fang, and Jun Yin, and Yaxing Shen, and Hao Wang, and Han Tang, and Xiaosang Chen
September 2019, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Yong Fang, and Jun Yin, and Yaxing Shen, and Hao Wang, and Han Tang, and Xiaosang Chen
August 2019, Journal of cellular physiology,
Yong Fang, and Jun Yin, and Yaxing Shen, and Hao Wang, and Han Tang, and Xiaosang Chen
October 2017, Oncology reports,
Yong Fang, and Jun Yin, and Yaxing Shen, and Hao Wang, and Han Tang, and Xiaosang Chen
January 2020, Technology in cancer research & treatment,
Yong Fang, and Jun Yin, and Yaxing Shen, and Hao Wang, and Han Tang, and Xiaosang Chen
January 2020, Journal of oncology,
Yong Fang, and Jun Yin, and Yaxing Shen, and Hao Wang, and Han Tang, and Xiaosang Chen
January 2022, Evidence-based complementary and alternative medicine : eCAM,
Yong Fang, and Jun Yin, and Yaxing Shen, and Hao Wang, and Han Tang, and Xiaosang Chen
November 2020, Bioscience reports,
Copied contents to your clipboard!