Analysis of the Streptococcus mutans Proteome during Acid and Oxidative Stress Reveals Modules of Protein Coexpression and an Expanded Role for the TreR Transcriptional Regulator. 2022

Elizabeth L Tinder, and Roberta C Faustoferri, and Andrew A Buckley, and Robert G Quivey, and Jonathon L Baker
Department of Infectious Disease, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.

Streptococcus mutans promotes a tooth-damaging dysbiosis in the oral microbiota because it can form biofilms and survive acid stress better than most of its ecological competitors, which are typically health associated. Many of these commensals produce hydrogen peroxide; therefore, S. mutans must manage both oxidative stress and acid stress with coordinated and complex physiological responses. In this study, the proteome of S. mutans was examined during regulated growth in acid and oxidative stresses as well as in deletion mutants with impaired oxidative stress phenotypes, Δnox and ΔtreR. A total of 607 proteins exhibited significantly different abundances across the conditions tested, and correlation network analysis identified modules of coexpressed proteins that were responsive to the deletion of nox and/or treR as well as acid and oxidative stress. The data explained the reactive oxygen species (ROS)-sensitive and mutacin-deficient phenotypes exhibited by the ΔtreR strain. SMU.1069-1070, a poorly understood LytTR system, had an elevated abundance in the ΔtreR strain. S. mutans LytTR systems regulate mutacin production and competence, which may explain how TreR affects mutacin production. Furthermore, the protein cluster that produces mutanobactin, a lipopeptide important in ROS tolerance, displayed a reduced abundance in the ΔtreR strain. The role of Nox as a keystone in the oxidative stress response was also emphasized. Crucially, this data set provides oral health researchers with a proteome atlas that will enable a more complete understanding of the S. mutans stress responses that are required for pathogenesis, and will facilitate the development of new and improved therapeutic approaches for dental caries. IMPORTANCE Dental caries is the most common chronic infectious disease worldwide and disproportionately affects marginalized socioeconomic groups. Streptococcus mutans is considered a primary etiological agent of caries, with its pathogenicity being dependent on coordinated physiological stress responses that mitigate the damage caused by the oxidative and acid stress common within dental plaque. In this study, the proteome of S. mutans was examined during growth in acidic and oxidative stresses as well in nox and treR deletion mutants. A total of 607 proteins were differentially expressed across the strains/growth conditions, and modules of coexpressed proteins were identified, which enabled mapping the acid and oxidative stress responses across S. mutans metabolism. The presence of TreR was linked to mutacin production via LytTR system signaling and to oxidative stress via mutanobactin production. The data provided by this study will guide future research elucidating S. mutans pathogenesis and developing improved preventative and treatment modalities for dental caries.

UI MeSH Term Description Entries
D003731 Dental Caries Localized destruction of the tooth surface initiated by decalcification of the enamel followed by enzymatic lysis of organic structures and leading to cavity formation. If left unchecked, the cavity may penetrate the enamel and dentin and reach the pulp. Caries, Dental,Carious Lesions,Dental Cavities,Dental Cavity,Dental Decay,Dental White Spots,Carious Dentin,Decay, Dental,Dental White Spot,White Spot, Dental,White Spots, Dental,Carious Dentins,Carious Lesion,Cavities, Dental,Cavity, Dental,Dentin, Carious,Dentins, Carious,Lesion, Carious,Lesions, Carious,Spot, Dental White,Spots, Dental White
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013295 Streptococcus mutans A polysaccharide-producing species of STREPTOCOCCUS isolated from human dental plaque.
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D018384 Oxidative Stress A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi). Anti-oxidative Stress,Antioxidative Stress,DNA Oxidative Damage,Nitro-Oxidative Stress,Oxidative Cleavage,Oxidative DNA Damage,Oxidative Damage,Oxidative Injury,Oxidative Nitrative Stress,Oxidative Stress Injury,Oxidative and Nitrosative Stress,Stress, Oxidative,Anti oxidative Stress,Anti-oxidative Stresses,Antioxidative Stresses,Cleavage, Oxidative,DNA Damage, Oxidative,DNA Oxidative Damages,Damage, DNA Oxidative,Damage, Oxidative,Damage, Oxidative DNA,Injury, Oxidative,Injury, Oxidative Stress,Nitrative Stress, Oxidative,Nitro Oxidative Stress,Nitro-Oxidative Stresses,Oxidative Cleavages,Oxidative DNA Damages,Oxidative Damage, DNA,Oxidative Damages,Oxidative Injuries,Oxidative Nitrative Stresses,Oxidative Stress Injuries,Oxidative Stresses,Stress Injury, Oxidative,Stress, Anti-oxidative,Stress, Antioxidative,Stress, Nitro-Oxidative,Stress, Oxidative Nitrative,Stresses, Nitro-Oxidative
D020543 Proteome The protein complement of an organism coded for by its genome. Proteomes

Related Publications

Elizabeth L Tinder, and Roberta C Faustoferri, and Andrew A Buckley, and Robert G Quivey, and Jonathon L Baker
February 2021, FEMS microbiology letters,
Elizabeth L Tinder, and Roberta C Faustoferri, and Andrew A Buckley, and Robert G Quivey, and Jonathon L Baker
June 2018, Journal of bacteriology,
Elizabeth L Tinder, and Roberta C Faustoferri, and Andrew A Buckley, and Robert G Quivey, and Jonathon L Baker
May 2004, Microbiology (Reading, England),
Elizabeth L Tinder, and Roberta C Faustoferri, and Andrew A Buckley, and Robert G Quivey, and Jonathon L Baker
November 2008, Letters in applied microbiology,
Elizabeth L Tinder, and Roberta C Faustoferri, and Andrew A Buckley, and Robert G Quivey, and Jonathon L Baker
February 2024, Applied and environmental microbiology,
Elizabeth L Tinder, and Roberta C Faustoferri, and Andrew A Buckley, and Robert G Quivey, and Jonathon L Baker
February 2011, Journal of bacteriology,
Elizabeth L Tinder, and Roberta C Faustoferri, and Andrew A Buckley, and Robert G Quivey, and Jonathon L Baker
July 2020, PLoS pathogens,
Elizabeth L Tinder, and Roberta C Faustoferri, and Andrew A Buckley, and Robert G Quivey, and Jonathon L Baker
October 2022, Microbiology (Reading, England),
Elizabeth L Tinder, and Roberta C Faustoferri, and Andrew A Buckley, and Robert G Quivey, and Jonathon L Baker
April 2006, BMC microbiology,
Elizabeth L Tinder, and Roberta C Faustoferri, and Andrew A Buckley, and Robert G Quivey, and Jonathon L Baker
April 2015, Molecular oral microbiology,
Copied contents to your clipboard!