Glucose, lactic-acid, and oxygen metabolism of BHK and L929 cells on artificial capillary perfusion units have been studied using several different modes of perfusion. After 7 to 10 days, cells planted in the extracapillary compartment of culture units containing 80 to 150 fibers reached populations that used 0.073 +/- 0.025 mumol per min glucose and 0.76 +/- 0.26 microliter per min oxygen and excreted 0.078 +/- 0.038 mumol per min lactic acid. From these data it is estimated that these units contain approximately 2 x 10(7) cells. The metabolic rate of cultures perfused through the capillaries or through the extracapillary compartment was not affected significantly by change in flow rate except at perfusion flow rates less than or equal to 0.05 ml per min. The cell population, as measured by metabolic activity, did not increase significantly when the serum content of the medium was less than or equal to 1%. No major differences were found in glucose utilization rates of equal numbers of cells on artificial capillaries, on short-term suspension culture, or as monolayers in plastic flasks. Artificial capillary perfusion may provide a simple system for studying metabolism of mammalian cells in culture.