Central-peripheral dichotomy: color-motion and luminance-motion binding show stronger top-down feedback in central vision. 2022

Keyan Bi, and Yifei Zhang, and Yan-Yu Zhang
School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.

Recently a theory (Zhaoping, Vision Research, 136, 32-49, 2017) proposed that top-down feedback from higher to lower visual cortical areas, to aid visual recognition, is stronger in the central than in the peripheral visual fields. Since top-down feedback helps feature binding, a critical visual recognition process, this theory predicts that insufficient feedback in the periphery should make feature misbinding more likely. To test this prediction, this study assessed binding between color and motion features, or between luminance and motion features, at different visual field eccentricities. We first used color-motion stimuli containing equiluminant red and green dots moving in opposite directions, for example, red dots moved leftward while green dots moved rightward. Such stimuli were shown in both a central reference strip and a peripheral test strip; participants reported whether it was the first or second interval in a trial in which the dots of each color moved in the opposite directions between the two strips. The center of the test strip was at 4° or 15° away from the gaze fixation. Participants' performance was much worse when the test strip was more peripheral, suggesting that feature misbinding occurred more frequently there. This held even when the size and density of the dots were adjusted by eccentricity-dependent cortical magnification factors, and even when red/green dots were replaced by yellow/blue dots or black/white dots to suit the retinal input sampling peripherally. Our findings support that top-down feedback is more directed to central vision, which can resolve ambiguities in feature binding at more central visual locations.

UI MeSH Term Description Entries
D009039 Motion Perception The real or apparent movement of objects through the visual field. Movement Perception,Perception, Motion,Perception, Movement
D003118 Color Perception Mental processing of chromatic signals (COLOR VISION) from the eye by the VISUAL CORTEX where they are converted into symbolic representations. Color perception involves numerous neurons, and is influenced not only by the distribution of wavelengths from the viewed object, but also by its background color and brightness contrast at its boundary. Color Perceptions,Perception, Color,Perceptions, Color
D005246 Feedback A mechanism of communication within a system in that the input signal generates an output response which returns to influence the continued activity or productivity of that system. Feedbacks
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014785 Vision, Ocular The process in which light signals are transformed by the PHOTORECEPTOR CELLS into electrical signals which can then be transmitted to the brain. Vision,Light Signal Transduction, Visual,Ocular Vision,Visual Light Signal Transduction,Visual Phototransduction,Visual Transduction,Phototransduction, Visual,Transduction, Visual
D014793 Visual Cortex Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS. Area V2,Area V3,Area V4,Area V5,Associative Visual Cortex,Brodmann Area 18,Brodmann Area 19,Brodmann's Area 18,Brodmann's Area 19,Cortical Area V2,Cortical Area V3,Cortical Area V4,Cortical Area V5,Secondary Visual Cortex,Visual Cortex Secondary,Visual Cortex V2,Visual Cortex V3,Visual Cortex V3, V4, V5,Visual Cortex V4,Visual Cortex V5,Visual Cortex, Associative,Visual Motion Area,Extrastriate Cortex,Area 18, Brodmann,Area 18, Brodmann's,Area 19, Brodmann,Area 19, Brodmann's,Area V2, Cortical,Area V3, Cortical,Area V4, Cortical,Area V5, Cortical,Area, Visual Motion,Associative Visual Cortices,Brodmanns Area 18,Brodmanns Area 19,Cortex Secondary, Visual,Cortex V2, Visual,Cortex V3, Visual,Cortex, Associative Visual,Cortex, Extrastriate,Cortex, Secondary Visual,Cortex, Visual,Cortical Area V3s,Extrastriate Cortices,Secondary Visual Cortices,V3, Cortical Area,V3, Visual Cortex,V4, Area,V4, Cortical Area,V5, Area,V5, Cortical Area,V5, Visual Cortex,Visual Cortex Secondaries,Visual Cortex, Secondary,Visual Motion Areas
D014794 Visual Fields The total area or space visible in a person's peripheral vision with the eye looking straightforward. Field, Visual,Fields, Visual,Visual Field

Related Publications

Keyan Bi, and Yifei Zhang, and Yan-Yu Zhang
February 1986, American journal of optometry and physiological optics,
Keyan Bi, and Yifei Zhang, and Yan-Yu Zhang
January 2019, Attention, perception & psychophysics,
Keyan Bi, and Yifei Zhang, and Yan-Yu Zhang
January 2000, Vision research,
Keyan Bi, and Yifei Zhang, and Yan-Yu Zhang
June 2023, Scientific reports,
Keyan Bi, and Yifei Zhang, and Yan-Yu Zhang
January 2020, i-Perception,
Keyan Bi, and Yifei Zhang, and Yan-Yu Zhang
April 1996, Vision research,
Keyan Bi, and Yifei Zhang, and Yan-Yu Zhang
October 2003, Journal of experimental psychology. Human perception and performance,
Keyan Bi, and Yifei Zhang, and Yan-Yu Zhang
June 1972, Investigative ophthalmology,
Keyan Bi, and Yifei Zhang, and Yan-Yu Zhang
January 1986, Perception,
Keyan Bi, and Yifei Zhang, and Yan-Yu Zhang
January 1985, Vision research,
Copied contents to your clipboard!