Stereochemistry and mechanism of reactions catalyzed by tryptophanase Escherichia coli. 1978

J C Vederas, and E Schleicher, and M D Tsai, and H G Floss

Several beta replacement and alpha,beta elimination reactions catalyzed by tryptophanase from Escherichia coli are shown to proceed stereospecifically with retention of configuration. These conversions include synthesis of tryptophan from (2S,3R)- and (2s,3s)-[3(-3H)]serine in the presence of indole, deamination of these serines in D2O to pyruvate and ammonia, and cleavage of (2S,3R)-and (2S,3S)-[3(-3H)]tryptophan in D2O to indole, pyruvate, and ammonia. A coupled reaction with lactate dehydrogenase was used to trap the stereospecifically labeled [3-H,2H,3H]pryuvates as lactate, which was oxidized to acetate for chirality analysis of the methyl group. During deamination of tryptophan there is significant intramolecular transfer of the alpha proton of the amino acid to C-3 of indole. To determine the exposed face of the cofactor.substrate complex on the enzyme surface and to analyze its conformational orientation, sodium boro[3H]hydride was used to reduce tryptophanase-bound alaninepyridoxal phosphate Schiff's base. Degradation of the resulting pyridoxylalanine to (2S)-[2(-3H)]alanine and (4'S)-[4'(-3H)]pyridoxamine demonstrates that reduction occurs from the exposed si face at C-4' of the complex and that the ketimine double bond is trans.

UI MeSH Term Description Entries
D007553 Isotope Labeling Techniques for labeling a substance with a stable or radioactive isotope. It is not used for articles involving labeled substances unless the methods of labeling are substantively discussed. Tracers that may be labeled include chemical substances, cells, or microorganisms. Isotope Labeling, Stable,Isotope-Coded Affinity Tagging,Isotopically-Coded Affinity Tagging,Affinity Tagging, Isotope-Coded,Affinity Tagging, Isotopically-Coded,Isotope Coded Affinity Tagging,Labeling, Isotope,Labeling, Stable Isotope,Stable Isotope Labeling,Tagging, Isotope-Coded Affinity,Tagging, Isotopically-Coded Affinity
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008190 Lyases A class of enzymes that catalyze the cleavage of C-C, C-O, and C-N, and other bonds by other means than by hydrolysis or oxidation. (Enzyme Nomenclature, 1992) EC 4. Desmolase,Desmolases,Lyase
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D003903 Deuterium The stable isotope of hydrogen. It has one neutron and one proton in the nucleus. Deuterons,Hydrogen-2,Hydrogen 2
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014316 Tritium The radioactive isotope of hydrogen also known as hydrogen-3. It contains two NEUTRONS and one PROTON in its nucleus and decays to produce low energy BETA PARTICLES. Hydrogen-3,Hydrogen 3
D014368 Tryptophanase An enzyme that catalyzes the conversion of L-tryptophan and water to indole, pyruvate, and ammonia. It is a pyridoxal-phosphate protein, requiring K+. It also catalyzes 2,3-elimination and beta-replacement reactions of some indole-substituted tryptophan analogs of L-cysteine, L-serine, and other 3-substituted amino acids. (From Enzyme Nomenclature, 1992) EC 4.1.99.1. Tryptophan Indole-Lyase,Indole-Lyase, Tryptophan,Tryptophan Indole Lyase

Related Publications

J C Vederas, and E Schleicher, and M D Tsai, and H G Floss
February 1976, Journal of the American Chemical Society,
J C Vederas, and E Schleicher, and M D Tsai, and H G Floss
April 1987, Zeitschrift fur Naturforschung. C, Journal of biosciences,
J C Vederas, and E Schleicher, and M D Tsai, and H G Floss
August 1967, Journal of molecular biology,
J C Vederas, and E Schleicher, and M D Tsai, and H G Floss
July 1979, The Journal of biological chemistry,
J C Vederas, and E Schleicher, and M D Tsai, and H G Floss
June 1967, The Journal of biological chemistry,
J C Vederas, and E Schleicher, and M D Tsai, and H G Floss
August 1994, Microbiology (Reading, England),
J C Vederas, and E Schleicher, and M D Tsai, and H G Floss
July 2006, Acta crystallographica. Section D, Biological crystallography,
J C Vederas, and E Schleicher, and M D Tsai, and H G Floss
August 1978, The Journal of biological chemistry,
J C Vederas, and E Schleicher, and M D Tsai, and H G Floss
February 1978, Biochemistry,
J C Vederas, and E Schleicher, and M D Tsai, and H G Floss
June 1967, The Journal of biological chemistry,
Copied contents to your clipboard!