Anti-inflammatory effects of mesenchymal stem cell-conditioned media inhibited macrophages activation in vitro. 2022

Quan-He Jin, and Hyung-Keun Kim, and Ju-Yong Na, and Cheng Jin, and Jong-Keun Seon
Department of Orthopaedic Surgery, Chonnam National University Medical School and Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, Republic of Korea.

The immunomodulatory effects of mesenchymal stem cells (MSCs) on macrophages have been reported, however, the underlying mechanism remains unknown. Therefore, this study aimed to investigate the anti-inflammatory effects of MSCs on lipopolysaccharide (LPS)-stimulated macrophages and the subsequent downregulation of their inflammatory mediators. Macrophages were treated with conditioned media from MSCs, without a subsequent change of MSCs responding to the inflammation state. This study also evaluated whether the interleukin (IL) 4 stimulation of MSCs can improve their anti-inflammatory effects. Results demonstrated that the MSC-conditioned medium (MSC-CM) stimulated with IL4 significantly inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression of LPS-activated macrophages. MSC-CM treatment inhibited the mRNA transcription of the cytokines IL1β and IL6, the chemokines C-C motif ligand (CCL) 2, CCL3, CCL4, and CCL5, and the chemokine receptors CCR2 and CCR5, in LPS-stimulated macrophages. As revealed through western blot and immunofluorescence analyses, the phosphorylation of p38, JNK, and ERK MAPKs, as well as phosphorylation of NF-κB in stimulated macrophages, were also inhibited by the MSC-CM. Further, more potent anti-inflammatory effects were observed with the IL4-stimulated cells, compared with those observed with the non-stimulated cells. The MSC-CM demonstrated a potent anti-inflammatory effect on LPS-activated macrophages, while the IL4 stimulation improved this effect. These findings indicate that MSCs could exert anti-inflammatory effects on macrophages, and may be considered as a therapeutic agent in inflammation treatment.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000893 Anti-Inflammatory Agents Substances that reduce or suppress INFLAMMATION. Anti-Inflammatory Agent,Antiinflammatory Agent,Agents, Anti-Inflammatory,Agents, Antiinflammatory,Anti-Inflammatories,Antiinflammatories,Antiinflammatory Agents,Agent, Anti-Inflammatory,Agent, Antiinflammatory,Agents, Anti Inflammatory,Anti Inflammatories,Anti Inflammatory Agent,Anti Inflammatory Agents
D015847 Interleukin-4 A soluble factor produced by activated T-LYMPHOCYTES that induces the expression of MHC CLASS II GENES and FC RECEPTORS on B-LYMPHOCYTES and causes their proliferation and differentiation. It also acts on T-lymphocytes, MAST CELLS, and several other hematopoietic lineage cells. B-Cell Growth Factor-I,B-Cell Stimulatory Factor-1,Binetrakin,IL-4,Mast Cell Growth Factor-2,B Cell Stimulatory Factor-1,B-Cell Growth Factor-1,B-Cell Proliferating Factor,B-Cell Stimulating Factor-1,B-Cell Stimulatory Factor 1,BCGF-1,BSF-1,IL4,MCGF-2,B Cell Growth Factor 1,B Cell Growth Factor I,B Cell Proliferating Factor,B Cell Stimulating Factor 1,B Cell Stimulatory Factor 1,Interleukin 4,Mast Cell Growth Factor 2
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D017077 Culture Media, Conditioned Culture media containing biologically active components obtained from previously cultured cells or tissues that have released into the media substances affecting certain cell functions (e.g., growth, lysis). Conditioned Culture Media,Conditioned Culture Medium,Conditioned Media,Conditioned Medium,Culture Medium, Conditioned,Media, Conditioned,Medium, Conditioned
D051546 Cyclooxygenase 2 An inducibly-expressed subtype of prostaglandin-endoperoxide synthase. It plays an important role in many cellular processes and INFLAMMATION. It is the target of COX2 INHIBITORS. COX-2 Prostaglandin Synthase,Cyclo-Oxygenase II,Cyclooxygenase-2,PGHS-2,PTGS2,Prostaglandin H Synthase-2,COX 2 Prostaglandin Synthase,Cyclo Oxygenase II,Prostaglandin H Synthase 2,Prostaglandin Synthase, COX-2,Synthase, COX-2 Prostaglandin

Related Publications

Quan-He Jin, and Hyung-Keun Kim, and Ju-Yong Na, and Cheng Jin, and Jong-Keun Seon
December 2016, Inflammation,
Quan-He Jin, and Hyung-Keun Kim, and Ju-Yong Na, and Cheng Jin, and Jong-Keun Seon
January 2021, Stem cell investigation,
Quan-He Jin, and Hyung-Keun Kim, and Ju-Yong Na, and Cheng Jin, and Jong-Keun Seon
October 2017, Cell journal,
Quan-He Jin, and Hyung-Keun Kim, and Ju-Yong Na, and Cheng Jin, and Jong-Keun Seon
January 2011, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation,
Quan-He Jin, and Hyung-Keun Kim, and Ju-Yong Na, and Cheng Jin, and Jong-Keun Seon
August 2012, Zhongguo shi yan xue ye xue za zhi,
Quan-He Jin, and Hyung-Keun Kim, and Ju-Yong Na, and Cheng Jin, and Jong-Keun Seon
March 2023, bioRxiv : the preprint server for biology,
Quan-He Jin, and Hyung-Keun Kim, and Ju-Yong Na, and Cheng Jin, and Jong-Keun Seon
January 2019, Case reports in dermatological medicine,
Quan-He Jin, and Hyung-Keun Kim, and Ju-Yong Na, and Cheng Jin, and Jong-Keun Seon
January 2016, Journal of stem cells,
Quan-He Jin, and Hyung-Keun Kim, and Ju-Yong Na, and Cheng Jin, and Jong-Keun Seon
November 2016, Experimental cell research,
Quan-He Jin, and Hyung-Keun Kim, and Ju-Yong Na, and Cheng Jin, and Jong-Keun Seon
February 2018, Journal of cellular and molecular medicine,
Copied contents to your clipboard!