Genome organization of RNA tumor viruses II. Physical maps of in vitro-synthesized Moloney murine leukemia virus double-stranded DNA by restriction endonucleases. 1978

I M Verma, and M A McKennett

Physical maps of the genome of Moloney murine leukemia virus (M-MLV) DNA were constructed by using bacterial restriction endonucleases. The in vitro-synthesized M-MLV double-stranded DNA was used as the source of the viral DNA. Restriction endonucleases Sal I and Hind III cleave viral DNA at only one site and, thus, generate two DNA fragments. The two DNA fragments generated by Sal I are Sal IA (molecular weight, 3.5 x 10(6)) and Sal IB (molecular weight, 2.4 x 10(6)) and by Hind III are Hind IIIA (molecular weight, 3.6 x 10(6) and Hind IIIB (molecular weight, 2.3 x 10(6)). Restriction endonuclease Bam I generates four fragments of molecular weights of 2.1 x 10(6) (Bam IA), 2 X 10(6) (Bam IB), 1.25 X 10(6) (Bam IC), and 0.24 x 10(6) (Bam ID), whereas restriction endonuclease Hpa I cleaves the M-MLV double-stranded DNA twice to give three fragments of molecular weights of 4.4 x 10(6) (Hpa IA), 0.84 X 10(6) (Hpa IB), and 0.74 x 10(6) (Hpa IC). Digestion of M-MLV double-stranded DNA with restriction endonuclease Sma I produces four fragments of molecular weights of 3.9 x 10(6) (Sma IA), 1.3 X 10(6) (Sma IB), 0.28 X 10(6) (Sma IC), and 0.21 x 10(6) (Sma ID). A mixture of restriction endonucleases Bgl I and Bgl II (Bgl I + II) cleaves the viral DNA at four sites generating five fragments of approximate molecular weights of 2 x 10(6) (Bgl + IIA), 1.75 X 10(6) (Bgl I + IIB), 1.25 X 10(6) (Bgl I + IIC), 0.40 X 10(6) (Bgl I + IID), and 0.31 x 10(6) (Bgl I + IIE). The order of the fragments in relation to the 5' end and 3' end of the genome was determined either by using fractional-length M-MLV double-stranded DNA for digestion by restriction endonucleases or by redigestion of Sal IA, Sal IB, Hind IIIA, and Hind IIIB fragments with other restriction endonucleases. In addition, a number of other restriction endonucleases that cleave in vitro-synthesized M-MLV double-stranded DNA have also been listed.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D008979 Moloney murine leukemia virus A strain of Murine leukemia virus (LEUKEMIA VIRUS, MURINE) arising during the propagation of S37 mouse sarcoma, and causing lymphoid leukemia in mice. It also infects rats and newborn hamsters. It is apparently transmitted to embryos in utero and to newborns through mother's milk. Moloney Leukemia Virus,Leukemia Virus, Moloney,Virus, Moloney Leukemia
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D004256 DNA Polymerase I A DNA-dependent DNA polymerase characterized in prokaryotes and may be present in higher organisms. It has both 3'-5' and 5'-3' exonuclease activity, but cannot use native double-stranded DNA as template-primer. It is not inhibited by sulfhydryl reagents and is active in both DNA synthesis and repair. DNA Polymerase alpha,DNA-Dependent DNA Polymerase I,Klenow Fragment,DNA Pol I,DNA Dependent DNA Polymerase I,Polymerase alpha, DNA
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005814 Genes, Viral The functional hereditary units of VIRUSES. Viral Genes,Gene, Viral,Viral Gene

Related Publications

I M Verma, and M A McKennett
July 1979, Proceedings of the National Academy of Sciences of the United States of America,
I M Verma, and M A McKennett
December 2023, bioRxiv : the preprint server for biology,
I M Verma, and M A McKennett
January 1979, Cold Spring Harbor symposia on quantitative biology,
I M Verma, and M A McKennett
October 1978, Virology,
Copied contents to your clipboard!