Effect of RNase III on efficiency of translation of bacteriophage T7 lysozyme mRNA. 1978

F S Hagen, and E T Young

RNase III had no positive effect on the translation of bacteriophage T7 lysozyme mRNA in vivo or in vitro. The time of appearance and quanity of lysozyme in T7-infected E. coli BL107, an RNase III- strain, and T7-infected E. coli BL15, a nearly isogenic RNase III+ strain, were indistinguishable. Nearly identical patterns of lysozyme mRNA activity were obtained when RNA extracted at different times after infection of RNase III+ and RNase III- hosts was translated in cell-free extracts of E. coli containing or lacking RNase III. Exposure of RNA extracted from T7-infected E. coli BL107 (RNase III-) to purified RNase III did not increase the lysozyme mRNA activity of this RNA. The only result that implied that RNase III has a differential effect on the translatability of the lysozyme mRNA was the translation of fractionaed RNA from T7-infected E. coli BL107. Translation of the smallest and largest lysozyme messages, 0.33 x 10(6) and 4 x 10(6) to 5 x 10(6) daltons, was the most inefficient in RNase III- cell-free extracts as compared to RNase III+ cell-free translation. The translation of the most abundant, medium-sized lysozyme mRNA between 0.9 x 10(6) and 1.5 x 10(6) daltons was the least affected by the absence of RNase III. The existence of a lag between the appearance of lysozyme mRNA and the appearance of lysozyme in T7 infection was confirmed. In these studies a very rapid method of RNA extraction was used, eliminating the possibility of continued RNA transcription during cell collection and RNA extraction. With this method of analysis, the length of the lag period was established at about 3 min. The possibility that RNase III is the controlling element of the lag period was eliminated by these investigations.

UI MeSH Term Description Entries
D009113 Muramidase A basic enzyme that is present in saliva, tears, egg white, and many animal fluids. It functions as an antibacterial agent. The enzyme catalyzes the hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrin. EC 3.2.1.17. Lysozyme,Leftose,N-Acetylmuramide Glycanhydrolase,Glycanhydrolase, N-Acetylmuramide,N Acetylmuramide Glycanhydrolase
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D012260 Ribonucleases Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-. Nucleases, RNA,RNase,Acid Ribonuclease,Alkaline Ribonuclease,Ribonuclease,RNA Nucleases,Ribonuclease, Acid,Ribonuclease, Alkaline
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014176 Protein Biosynthesis The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS. Genetic Translation,Peptide Biosynthesis, Ribosomal,Protein Translation,Translation, Genetic,Protein Biosynthesis, Ribosomal,Protein Synthesis, Ribosomal,Ribosomal Peptide Biosynthesis,mRNA Translation,Biosynthesis, Protein,Biosynthesis, Ribosomal Peptide,Biosynthesis, Ribosomal Protein,Genetic Translations,Ribosomal Protein Biosynthesis,Ribosomal Protein Synthesis,Synthesis, Ribosomal Protein,Translation, Protein,Translation, mRNA,mRNA Translations

Related Publications

F S Hagen, and E T Young
December 1975, Journal of molecular biology,
F S Hagen, and E T Young
June 1976, Journal of virology,
F S Hagen, and E T Young
July 1975, Brookhaven symposia in biology,
F S Hagen, and E T Young
October 1971, Biochemical and biophysical research communications,
F S Hagen, and E T Young
January 1990, Chinese journal of biotechnology,
F S Hagen, and E T Young
January 1998, Molecular microbiology,
F S Hagen, and E T Young
May 1997, Journal of molecular biology,
F S Hagen, and E T Young
July 2004, Journal of molecular biology,
F S Hagen, and E T Young
September 1987, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!