Chemotaxis and cell motility in the cellular slime molds. 1986

S J McRobbie

Chemotaxis and cell motility have essential roles to play throughout the developmental cycle of the cellular slime molds. The particular emphasis of this review, however, will be on the amoeboid stages of the life cycle. The nature of the chemoattractants and their detection will be discussed as will the possible mechanisms that may account for the directed locomotion of amoebae. Intracellular chemoattractant-elicited molecular responses thought to play a role in transduction of extracellular signals into a motility response will also be examined. Furthermore, relationships of these transduction pathway components with changes in assembly states of the cytoskeletal proteins contributing to shape change and cell movement will be assessed. Theories of amoeboid movement involving these cytoskeletal proteins will be compared and discussed in terms of their relevance to cellular slime mold motility.

UI MeSH Term Description Entries
D009235 Myxomycetes A division of organisms that exist vegetatively as complex mobile plasmodia, reproduce by means of spores, and have complex life cycles. They are now classed as protozoa but formerly were considered fungi. Myxomycota,Protosteliomycetes,Slime Molds, Plasmodial,Slime Molds, True,Mold, Plasmodial Slime,Mold, True Slime,Molds, Plasmodial Slime,Molds, True Slime,Myxomycete,Myxomycotas,Plasmodial Slime Mold,Plasmodial Slime Molds,Protosteliomycete,Slime Mold, Plasmodial,Slime Mold, True,True Slime Mold,True Slime Molds
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002633 Chemotaxis The movement of cells or organisms toward or away from a substance in response to its concentration gradient. Haptotaxis
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium

Related Publications

S J McRobbie
April 1977, Journal of bacteriology,
S J McRobbie
April 1968, The Biological bulletin,
S J McRobbie
August 1969, Journal of bacteriology,
S J McRobbie
April 1975, Biochimica et biophysica acta,
S J McRobbie
April 1971, Journal of theoretical biology,
S J McRobbie
December 1965, Developmental biology,
S J McRobbie
September 1986, Seikagaku. The Journal of Japanese Biochemical Society,
S J McRobbie
January 2003, International review of cytology,
S J McRobbie
January 1971, Mycologia,
Copied contents to your clipboard!