TREC/KREC Levels and T and B Lymphocyte Subpopulations in COVID-19 Patients at Different Stages of the Disease. 2022

Andrei A Savchenko, and Elena Tikhonova, and Igor Kudryavtsev, and Dmitry Kudlay, and Ilya Korsunsky, and Vasily Beleniuk, and Alexandr Borisov
Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", Scientific Research Institute of Medical Problems of the North, 660022 Krasnoyarsk, Russia.

T and B cell-mediated immunity can be assessed using T cell receptor excision circle (TREC) and Kappa-deleting recombination excision circle (KREC) analysis, respectively, and successful implementation of this method requires evaluation of the correlation between the TREC frequencies and T cell subsets as well as KREC levels and B lymphocyte subsets. The aim of the present study was to evaluate the correlation between the TREC/KREC concentrations and T/B lymphocyte subsets at different stages of COVID-19. We examined 33 patients in the acute stage of COVID-19 (including 8 patients with poor outcomes) and 33 COVID-19 survivors. TREC/KREC concentrations were measured using quantitative real-time PCR. T/B lymphocyte subsets were determined using flow cytometry. Blood TREC and KREC levels were found to be significantly lower in the acute stage of COVID-19 compared to control values. Moreover, a zero blood TREC level was a predictor of a poor disease outcome. Reductions in CD3+CD4+CD45RO-CD62L- and CD3+CD8+CD45RO-CD62L- T cell counts (as well as in the main fractions of B1 and B2 B cells) indicated a favorable outcome in COVID-19 patients in the acute stage of the disease. Decreased CD3+CD4+CD45RO-CD62L+ and CD3+CD8+CD45RO-CD62L+ T cell frequencies and increased CD3+CD8+CD45RO-CD62L- cell counts were found to indicate a poor outcome in patients with acute COVID-19. These patients were also found to have increased B1 cell counts while demonstrating no changes in B2 cell counts. The levels of effector T cell subsets an naïve B cells were normal in COVID-19 survivors. The most pronounced correlations between TREC/KREC levels and T/B cell subsets counts were observed in COVID-19 survivors: there were positive correlations with naïve T and B lymphocytes and negative correlations with central and effector memory T cell subsets. The assessment of correlations between TREC and T cell subsets as well as KREC levels and B cell subset counts in patients with acute COVID-19 and COVID-19 survivors has shown that blood concentrations of TREC and KREC are sensitive indicators of the stage of antigen-independent differentiation of adaptive immunity cells. The results of the TREC and KREC analysis correlated with the stages of COVID-19 and differed depending on the outcome of COVID-19.

UI MeSH Term Description Entries
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000086382 COVID-19 A viral disorder generally characterized by high FEVER; COUGH; DYSPNEA; CHILLS; PERSISTENT TREMOR; MUSCLE PAIN; HEADACHE; SORE THROAT; a new loss of taste and/or smell (see AGEUSIA and ANOSMIA) and other symptoms of a VIRAL PNEUMONIA. In severe cases, a myriad of coagulopathy associated symptoms often correlating with COVID-19 severity is seen (e.g., BLOOD COAGULATION; THROMBOSIS; ACUTE RESPIRATORY DISTRESS SYNDROME; SEIZURES; HEART ATTACK; STROKE; multiple CEREBRAL INFARCTIONS; KIDNEY FAILURE; catastrophic ANTIPHOSPHOLIPID ANTIBODY SYNDROME and/or DISSEMINATED INTRAVASCULAR COAGULATION). In younger patients, rare inflammatory syndromes are sometimes associated with COVID-19 (e.g., atypical KAWASAKI SYNDROME; TOXIC SHOCK SYNDROME; pediatric multisystem inflammatory disease; and CYTOKINE STORM SYNDROME). A coronavirus, SARS-CoV-2, in the genus BETACORONAVIRUS is the causative agent. 2019 Novel Coronavirus Disease,2019 Novel Coronavirus Infection,2019-nCoV Disease,2019-nCoV Infection,COVID-19 Pandemic,COVID-19 Pandemics,COVID-19 Virus Disease,COVID-19 Virus Infection,Coronavirus Disease 2019,Coronavirus Disease-19,SARS Coronavirus 2 Infection,SARS-CoV-2 Infection,Severe Acute Respiratory Syndrome Coronavirus 2 Infection,COVID19,2019 nCoV Disease,2019 nCoV Infection,2019-nCoV Diseases,2019-nCoV Infections,COVID 19,COVID 19 Pandemic,COVID 19 Virus Disease,COVID 19 Virus Infection,COVID-19 Virus Diseases,COVID-19 Virus Infections,Coronavirus Disease 19,Disease 2019, Coronavirus,Disease, 2019-nCoV,Disease, COVID-19 Virus,Infection, 2019-nCoV,Infection, COVID-19 Virus,Infection, SARS-CoV-2,Pandemic, COVID-19,SARS CoV 2 Infection,SARS-CoV-2 Infections,Virus Disease, COVID-19,Virus Infection, COVID-19
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D016175 B-Lymphocyte Subsets A classification of B-lymphocytes based on structurally or functionally different populations of cells. B-Cell Subsets,Tumor-Infiltrating B Cells,Tumor-Infiltrating B Lymphocytes,B Effector 1 Cells,B Effector 2 Cells,B-1 Cells,B-1 Lymphocytes,B-2 Lymphocytes,B-Lymphocytes, Effector,B1 Lymphocytes,B2 Lymphocytes,Be1 Cells,Be2 Cells,Effector B Cells,B 1 Cells,B 1 Lymphocytes,B 2 Lymphocytes,B Cell Subsets,B Cell, Tumor-Infiltrating,B Lymphocyte Subsets,B Lymphocyte, Tumor-Infiltrating,B-1 Cell,B-1 Lymphocyte,B-2 Lymphocyte,B-Cell Subset,B-Lymphocyte Subset,B-Lymphocyte, Effector,B1 Lymphocyte,B2 Lymphocyte,Be1 Cell,Be2 Cell,Cell, B-1,Cell, Be1,Cell, Be2,Effector B Cell,Effector B-Lymphocyte,Effector B-Lymphocytes,Lymphocyte, B-1,Lymphocyte, B-2,Lymphocyte, B1,Lymphocyte, B2,Tumor Infiltrating B Cells,Tumor Infiltrating B Lymphocytes,Tumor-Infiltrating B Cell,Tumor-Infiltrating B Lymphocyte

Related Publications

Andrei A Savchenko, and Elena Tikhonova, and Igor Kudryavtsev, and Dmitry Kudlay, and Ilya Korsunsky, and Vasily Beleniuk, and Alexandr Borisov
August 2021, Diagnostics (Basel, Switzerland),
Andrei A Savchenko, and Elena Tikhonova, and Igor Kudryavtsev, and Dmitry Kudlay, and Ilya Korsunsky, and Vasily Beleniuk, and Alexandr Borisov
January 2018, Frontiers in physiology,
Andrei A Savchenko, and Elena Tikhonova, and Igor Kudryavtsev, and Dmitry Kudlay, and Ilya Korsunsky, and Vasily Beleniuk, and Alexandr Borisov
October 2021, Immunologic research,
Andrei A Savchenko, and Elena Tikhonova, and Igor Kudryavtsev, and Dmitry Kudlay, and Ilya Korsunsky, and Vasily Beleniuk, and Alexandr Borisov
March 2022, Scandinavian journal of immunology,
Andrei A Savchenko, and Elena Tikhonova, and Igor Kudryavtsev, and Dmitry Kudlay, and Ilya Korsunsky, and Vasily Beleniuk, and Alexandr Borisov
August 2018, Scandinavian journal of immunology,
Andrei A Savchenko, and Elena Tikhonova, and Igor Kudryavtsev, and Dmitry Kudlay, and Ilya Korsunsky, and Vasily Beleniuk, and Alexandr Borisov
January 1993, Journal of investigational allergology & clinical immunology,
Andrei A Savchenko, and Elena Tikhonova, and Igor Kudryavtsev, and Dmitry Kudlay, and Ilya Korsunsky, and Vasily Beleniuk, and Alexandr Borisov
April 2023, Clinical immunology (Orlando, Fla.),
Andrei A Savchenko, and Elena Tikhonova, and Igor Kudryavtsev, and Dmitry Kudlay, and Ilya Korsunsky, and Vasily Beleniuk, and Alexandr Borisov
July 2022, The Israel Medical Association journal : IMAJ,
Andrei A Savchenko, and Elena Tikhonova, and Igor Kudryavtsev, and Dmitry Kudlay, and Ilya Korsunsky, and Vasily Beleniuk, and Alexandr Borisov
February 1975, Pediatrics,
Andrei A Savchenko, and Elena Tikhonova, and Igor Kudryavtsev, and Dmitry Kudlay, and Ilya Korsunsky, and Vasily Beleniuk, and Alexandr Borisov
August 2021, Iranian journal of allergy, asthma, and immunology,
Copied contents to your clipboard!