The inactivation of human plasma alpha 1-proteinase inhibitor by proteinases from Staphylococcus aureus. 1986

J Potempa, and W Watorek, and J Travis

The interaction of three proteinases (seryl, cysteinyl, and metallo-) from Staphylococcus aureus with human plasma alpha 1-proteinase inhibitor has been investigated. As expected, none of the enzymes was inactivated by this protein, each, instead causing the conversion of the native inhibitor into an inactive form of decreased molecular weight. Amino-terminal sequence analysis indicated that inhibitor inactivation had occurred by peptide bond cleavage near the reactive center of this protein. When the inhibitor was modified by this treatment, it became resistant to both pH and temperature denaturation and, in contrast to the intact denatured protein, did not undergo further proteolytic degradation. This process of inactivation of alpha 1-proteinase inhibitor by pathogenic proteinases could result in a deregulation of its target enzyme, neutrophil elastase, and, therefore, may be important in the consumption of some plasma proteins by this enzyme during septicemia.

UI MeSH Term Description Entries
D008666 Metalloendopeptidases ENDOPEPTIDASES which use a metal such as ZINC in the catalytic mechanism. Metallo-Endoproteinases,Metalloendopeptidase
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D011489 Protein Denaturation Disruption of the non-covalent bonds and/or disulfide bonds responsible for maintaining the three-dimensional shape and activity of the native protein. Denaturation, Protein,Denaturations, Protein,Protein Denaturations
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000515 alpha 1-Antitrypsin Plasma glycoprotein member of the serpin superfamily which inhibits TRYPSIN; NEUTROPHIL ELASTASE; and other PROTEOLYTIC ENZYMES. Trypsin Inhibitor, alpha 1-Antitrypsin,alpha 1-Protease Inhibitor,alpha 1-Proteinase Inhibitor,A1PI,Prolastin,Serpin A1,Zemaira,alpha 1 Antiprotease,alpha 1-Antiproteinase,1-Antiproteinase, alpha,Antiprotease, alpha 1,Inhibitor, alpha 1-Protease,Inhibitor, alpha 1-Proteinase,Trypsin Inhibitor, alpha 1 Antitrypsin,alpha 1 Antiproteinase,alpha 1 Antitrypsin,alpha 1 Protease Inhibitor,alpha 1 Proteinase Inhibitor
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

J Potempa, and W Watorek, and J Travis
June 1977, The Biochemical journal,
J Potempa, and W Watorek, and J Travis
June 1982, Biochimica et biophysica acta,
J Potempa, and W Watorek, and J Travis
April 1990, FEBS letters,
J Potempa, and W Watorek, and J Travis
January 1985, The International journal of biochemistry,
J Potempa, and W Watorek, and J Travis
January 1983, Acta biochimica Polonica,
J Potempa, and W Watorek, and J Travis
June 1980, The American review of respiratory disease,
J Potempa, and W Watorek, and J Travis
March 1987, Research communications in chemical pathology and pharmacology,
J Potempa, and W Watorek, and J Travis
January 1992, Chemical research in toxicology,
Copied contents to your clipboard!