Changes in striatal specific 3-H-atropine binding after unilateral 6-hydroxydopamine lesions of nigrostriatal dopaminergic neurones. 1978

G Kato, and S Carson, and M L Kemel, and J Glowinski, and M F Giorguieff

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001930 Brain Injuries Acute and chronic (see also BRAIN INJURIES, CHRONIC) injuries to the brain, including the cerebral hemispheres, CEREBELLUM, and BRAIN STEM. Clinical manifestations depend on the nature of injury. Diffuse trauma to the brain is frequently associated with DIFFUSE AXONAL INJURY or COMA, POST-TRAUMATIC. Localized injuries may be associated with NEUROBEHAVIORAL MANIFESTATIONS; HEMIPARESIS, or other focal neurologic deficits. Brain Lacerations,Acute Brain Injuries,Brain Injuries, Acute,Brain Injuries, Focal,Focal Brain Injuries,Injuries, Acute Brain,Injuries, Brain,Acute Brain Injury,Brain Injury,Brain Injury, Acute,Brain Injury, Focal,Brain Laceration,Focal Brain Injury,Injuries, Focal Brain,Injury, Acute Brain,Injury, Brain,Injury, Focal Brain,Laceration, Brain,Lacerations, Brain
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D006892 Hydroxydopamines Dopamines with a hydroxy group substituted in one or more positions. Hydroxydopamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001285 Atropine An alkaloid, originally from Atropa belladonna, but found in other plants, mainly SOLANACEAE. Hyoscyamine is the 3(S)-endo isomer of atropine. AtroPen,Atropin Augenöl,Atropine Sulfate,Atropine Sulfate Anhydrous,Atropinol,Anhydrous, Atropine Sulfate,Augenöl, Atropin,Sulfate Anhydrous, Atropine,Sulfate, Atropine

Related Publications

G Kato, and S Carson, and M L Kemel, and J Glowinski, and M F Giorguieff
January 1990, Neuroscience,
G Kato, and S Carson, and M L Kemel, and J Glowinski, and M F Giorguieff
March 1994, Neuroscience letters,
G Kato, and S Carson, and M L Kemel, and J Glowinski, and M F Giorguieff
January 2000, Life sciences,
G Kato, and S Carson, and M L Kemel, and J Glowinski, and M F Giorguieff
December 1998, Experimental neurology,
G Kato, and S Carson, and M L Kemel, and J Glowinski, and M F Giorguieff
February 1992, Pharmacology, biochemistry, and behavior,
G Kato, and S Carson, and M L Kemel, and J Glowinski, and M F Giorguieff
September 1989, European journal of pharmacology,
G Kato, and S Carson, and M L Kemel, and J Glowinski, and M F Giorguieff
October 1996, Brain research,
G Kato, and S Carson, and M L Kemel, and J Glowinski, and M F Giorguieff
April 1982, European journal of pharmacology,
G Kato, and S Carson, and M L Kemel, and J Glowinski, and M F Giorguieff
February 1976, European journal of pharmacology,
G Kato, and S Carson, and M L Kemel, and J Glowinski, and M F Giorguieff
August 1998, Neuroscience,
Copied contents to your clipboard!