Role of α7 Nicotinic Acetylcholine Receptors in Synaptic Transmission in Frog Neuromuscular Contacts. 2022

O A Lenina, and I V Kovyazina
A. E. Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences, Kazan, Republic of Tatarstan, Russia.

The role of α7 nicotinic acetylcholine receptors in coupling of synaptic activity and muscle contractions was studied in frog (Rana ridibunda) neuromuscular synapses. The amplitude of endplate currents, the probability of action potential generation, and the strength of muscle contractions decreased in the presence of selective α7 antagonist methyllycaconitine. The effects of nicotinic acetylcholine receptor blockade depended on the pattern of the motor nerve stimulation. It can be assumed that the muscle action potential is a factor of retrograde control of neurosecretion, which modulates activity of α7 nicotinic receptors and the release of acetylcholine from motor nerve endings.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011898 Ranidae The family of true frogs of the order Anura. The family occurs worldwide except in Antarctica. Frogs, True,Rana,Frog, True,True Frog,True Frogs
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D064569 alpha7 Nicotinic Acetylcholine Receptor A member of the NICOTINIC ACETYLCHOLINE RECEPTOR subfamily of the LIGAND-GATED ION CHANNEL family. It consists entirely of pentameric α7 subunits expressed in the CNS, autonomic nervous system, vascular system, lymphocytes and spleen. Nicotinic Acetylcholine Receptor alpha7,Receptor, alpha-Bungarotoxin,alpha-Bungarotoxin Receptors,alpha7nAChR,nAChR alpha7 Subunit,Receptor, alpha Bungarotoxin,Receptors, alpha-Bungarotoxin,Subunit, nAChR alpha7,alpha Bungarotoxin Receptors,alpha-Bungarotoxin Receptor,alpha7 Subunit, nAChR

Related Publications

O A Lenina, and I V Kovyazina
April 2013, Brain research bulletin,
O A Lenina, and I V Kovyazina
March 2012, Biochimica et biophysica acta,
O A Lenina, and I V Kovyazina
August 2018, Oncology letters,
O A Lenina, and I V Kovyazina
October 2015, Pharmacological reviews,
O A Lenina, and I V Kovyazina
July 2021, Pharmacological reviews,
O A Lenina, and I V Kovyazina
May 2023, Nature reviews. Neurology,
O A Lenina, and I V Kovyazina
April 2023, Pharmacological research,
O A Lenina, and I V Kovyazina
January 2022, Frontiers in molecular neuroscience,
O A Lenina, and I V Kovyazina
October 2007, Biochemical pharmacology,
Copied contents to your clipboard!