Transmembrane protein ATG-9 links presynaptic autophagy with the synaptic vesicle cycle. 2022

Sisi Yang, and Daniel A Colón-Ramos
Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neuroscience and of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.

Macroautophagy/autophagy occurs preferentially at synapses and responds to increased neuronal activity states. How synaptic autophagy is coupled to the neuronal activity state is largely unknown. Through genetic approaches we find that ATG-9, the only transmembrane protein in the core autophagy pathway, is transported from the trans-Golgi network to synapses in C. elegans via the AP-3 complex. At synapses ATG-9 undergoes exo-endocytosis in an activity-dependent manner. Mutations that disrupt the endocytosis pathway, including a mutation associated with early onset Parkinsonism (EOP), lead to abnormal ATG-9 accumulation into subsynaptic clathrin-rich foci, and defects in activity-induced synaptic autophagy. We propose that ATG-9 exo-endocytosis links the activity-dependent synaptic vesicle cycle with autophagosome formation at synapses.

UI MeSH Term Description Entries
D002966 Clathrin The main structural coat protein of COATED VESICLES which play a key role in the intracellular transport between membranous organelles. Each molecule of clathrin consists of three light chains (CLATHRIN LIGHT CHAINS) and three heavy chains (CLATHRIN HEAVY CHAINS) that form a structure called a triskelion. Clathrin also interacts with cytoskeletal proteins.
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D000071183 Autophagy-Related Proteins Proteins and enzymes that function, often as components of MULTIPROTEIN COMPLEXES, to assemble AUTOPHAGOSOMES and carry out AUTOPHAGY. Autophagy-Related Protein,Autophagy Related Protein,Autophagy Related Proteins,Protein, Autophagy-Related
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D013572 Synaptic Vesicles Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents. Synaptic Vesicle,Vesicle, Synaptic,Vesicles, Synaptic
D017173 Caenorhabditis elegans A species of nematode that is widely used in biological, biochemical, and genetic studies. Caenorhabditis elegan,elegan, Caenorhabditis

Related Publications

Sisi Yang, and Daniel A Colón-Ramos
April 2004, Neuron,
Sisi Yang, and Daniel A Colón-Ramos
April 2021, Journal of neurochemistry,
Sisi Yang, and Daniel A Colón-Ramos
November 2006, Progress in neurobiology,
Sisi Yang, and Daniel A Colón-Ramos
January 2004, Annual review of neuroscience,
Sisi Yang, and Daniel A Colón-Ramos
January 1998, Annual review of physiology,
Sisi Yang, and Daniel A Colón-Ramos
June 1995, Nature,
Sisi Yang, and Daniel A Colón-Ramos
November 2000, Neuron,
Sisi Yang, and Daniel A Colón-Ramos
June 2014, Cell reports,
Sisi Yang, and Daniel A Colón-Ramos
April 2020, Journal of molecular biology,
Copied contents to your clipboard!