| D005516 |
Food Microbiology |
The presence of bacteria, viruses, and fungi in food and food products. This term is not restricted to pathogenic organisms: the presence of various non-pathogenic bacteria and fungi in cheeses and wines, for example, is included in this concept. |
Microbiology, Food |
|
| D001419 |
Bacteria |
One of the three domains of life (the others being Eukarya and ARCHAEA), also called Eubacteria. They are unicellular prokaryotic microorganisms which generally possess rigid cell walls, multiply by cell division, and exhibit three principal forms: round or coccal, rodlike or bacillary, and spiral or spirochetal. Bacteria can be classified by their response to OXYGEN: aerobic, anaerobic, or facultatively anaerobic; by the mode by which they obtain their energy: chemotrophy (via chemical reaction) or PHOTOTROPHY (via light reaction); for chemotrophs by their source of chemical energy: CHEMOLITHOTROPHY (from inorganic compounds) or chemoorganotrophy (from organic compounds); and by their source for CARBON; NITROGEN; etc.; HETEROTROPHY (from organic sources) or AUTOTROPHY (from CARBON DIOXIDE). They can also be classified by whether or not they stain (based on the structure of their CELL WALLS) with CRYSTAL VIOLET dye: gram-negative or gram-positive. |
Eubacteria |
|
| D015374 |
Biosensing Techniques |
Any of a variety of procedures which use biomolecular probes to measure the presence or concentration of biological molecules, biological structures, microorganisms, etc., by translating a biochemical interaction at the probe surface into a quantifiable physical signal. |
Bioprobes,Biosensors,Electrodes, Enzyme,Biosensing Technics,Bioprobe,Biosensing Technic,Biosensing Technique,Biosensor,Electrode, Enzyme,Enzyme Electrode,Enzyme Electrodes,Technic, Biosensing,Technics, Biosensing,Technique, Biosensing,Techniques, Biosensing |
|
| D044085 |
Microfluidics |
The study of fluid channels and chambers of tiny dimensions of tens to hundreds of micrometers and volumes of nanoliters or picoliters. This is of interest in biological MICROCIRCULATION and used in MICROCHEMISTRY and INVESTIGATIVE TECHNIQUES. |
Microfluidic |
|
| D056656 |
Lab-On-A-Chip Devices |
Microdevices that combine microfluidics technology with electrical and/or mechanical functions for analyzing very small fluid volumes. They consist of microchannels etched into substrates made of silicon, glass, or polymer using processes similar to photolithography. The test fluids in the channels can then interact with different elements such as electrodes, photodetectors, chemical sensors, pumps, and valves. |
Microchip Analytical Devices,Microfluidic Devices,Microfluidic Lab-On-A-Chip,Microfluidic Microchips,Nanochip Analytical Devices,Analytical Device, Microchip,Analytical Device, Nanochip,Analytical Devices, Microchip,Analytical Devices, Nanochip,Device, Lab-On-A-Chip,Device, Microchip Analytical,Device, Microfluidic,Device, Nanochip Analytical,Devices, Lab-On-A-Chip,Devices, Microchip Analytical,Devices, Microfluidic,Devices, Nanochip Analytical,Lab On A Chip Devices,Lab-On-A-Chip Device,Lab-On-A-Chip, Microfluidic,Lab-On-A-Chips, Microfluidic,Microchip Analytical Device,Microchip, Microfluidic,Microchips, Microfluidic,Microfluidic Device,Microfluidic Lab On A Chip,Microfluidic Lab-On-A-Chips,Microfluidic Microchip,Nanochip Analytical Device |
|
| D019453 |
Escherichia coli O157 |
A verocytotoxin-producing serogroup belonging to the O subfamily of Escherichia coli which has been shown to cause severe food-borne disease. A strain from this serogroup, serotype H7, which produces SHIGA TOXINS, has been linked to human disease outbreaks resulting from contamination of foods by E. coli O157 from bovine origin. |
E coli O157,E coli O157-H7,Escherichia coli O157-H7 |
|