[Isothermal amplification technology based on microfluidic chip]. 2022

Yunping Tu, and Dianlong Yang, and Zhongping Zhang, and Xiaobin Dong, and Luyao Liu, and Guijun Miao, and Lulu Zhang, and Xianbo Qiu
College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

Polymerase chain reaction (PCR) is the gold standard for nucleic acid amplification in molecular diagnostics. The PCR includes multiple reaction stages (denaturation, annealing, and extension), and a complicated thermalcycler is required to repetitively provide different temperatures for different stages for 30-40 cycles within at least 1-2 hours. Due to the complicated devices and the long amplification time, it is difficult to adopt conventional PCR in point-of-care testing (POCT). Comparing to conventional PCR, isothermal amplification is able to provide a much faster and more convenient nucleic acid detection because of highly efficient amplification at a constant reaction temperature provided by a simple heating device. When isothermal amplification is combined with microfluidics, a more competent platform for POCT can be established. For example, various diagnosis devices based on isothermal amplification have been used to rapidly and conveniently detect SARS-CoV-2 viruses. This review summarized the recent development and applications of the microfluidics-based isothermal amplification. First, different typical isothermal amplification methods and related detection methods have been introduced. Subsequently, different types of microfluidic systems with isothermal amplification were discussed based on their characteristics, for example, functionality, system structure, flow control, and operation principles. Furthermore, detection of pathogens (e.g. SARS-CoV-2 viruses) based on isothermal amplification was introduced. Finally, the combination of isothermal amplification with other new technologies, e.g. CRISPR, has been introduced as well.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000086382 COVID-19 A viral disorder generally characterized by high FEVER; COUGH; DYSPNEA; CHILLS; PERSISTENT TREMOR; MUSCLE PAIN; HEADACHE; SORE THROAT; a new loss of taste and/or smell (see AGEUSIA and ANOSMIA) and other symptoms of a VIRAL PNEUMONIA. In severe cases, a myriad of coagulopathy associated symptoms often correlating with COVID-19 severity is seen (e.g., BLOOD COAGULATION; THROMBOSIS; ACUTE RESPIRATORY DISTRESS SYNDROME; SEIZURES; HEART ATTACK; STROKE; multiple CEREBRAL INFARCTIONS; KIDNEY FAILURE; catastrophic ANTIPHOSPHOLIPID ANTIBODY SYNDROME and/or DISSEMINATED INTRAVASCULAR COAGULATION). In younger patients, rare inflammatory syndromes are sometimes associated with COVID-19 (e.g., atypical KAWASAKI SYNDROME; TOXIC SHOCK SYNDROME; pediatric multisystem inflammatory disease; and CYTOKINE STORM SYNDROME). A coronavirus, SARS-CoV-2, in the genus BETACORONAVIRUS is the causative agent. 2019 Novel Coronavirus Disease,2019 Novel Coronavirus Infection,2019-nCoV Disease,2019-nCoV Infection,COVID-19 Pandemic,COVID-19 Pandemics,COVID-19 Virus Disease,COVID-19 Virus Infection,Coronavirus Disease 2019,Coronavirus Disease-19,SARS Coronavirus 2 Infection,SARS-CoV-2 Infection,Severe Acute Respiratory Syndrome Coronavirus 2 Infection,COVID19,2019 nCoV Disease,2019 nCoV Infection,2019-nCoV Diseases,2019-nCoV Infections,COVID 19,COVID 19 Pandemic,COVID 19 Virus Disease,COVID 19 Virus Infection,COVID-19 Virus Diseases,COVID-19 Virus Infections,Coronavirus Disease 19,Disease 2019, Coronavirus,Disease, 2019-nCoV,Disease, COVID-19 Virus,Infection, 2019-nCoV,Infection, COVID-19 Virus,Infection, SARS-CoV-2,Pandemic, COVID-19,SARS CoV 2 Infection,SARS-CoV-2 Infections,Virus Disease, COVID-19,Virus Infection, COVID-19
D000086402 SARS-CoV-2 A species of BETACORONAVIRUS causing atypical respiratory disease (COVID-19) in humans. The organism was first identified in 2019 in Wuhan, China. The natural host is the Chinese intermediate horseshoe bat, RHINOLOPHUS affinis. 2019 Novel Coronavirus,COVID-19 Virus,COVID19 Virus,Coronavirus Disease 2019 Virus,SARS Coronavirus 2,SARS-CoV-2 Virus,Severe Acute Respiratory Syndrome Coronavirus 2,Wuhan Coronavirus,Wuhan Seafood Market Pneumonia Virus,2019-nCoV,2019 Novel Coronaviruses,COVID 19 Virus,COVID-19 Viruses,COVID19 Viruses,Coronavirus 2, SARS,Coronavirus, 2019 Novel,Coronavirus, Wuhan,Novel Coronavirus, 2019,SARS CoV 2 Virus,SARS-CoV-2 Viruses,Virus, COVID-19,Virus, COVID19,Virus, SARS-CoV-2,Viruses, COVID19
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D044085 Microfluidics The study of fluid channels and chambers of tiny dimensions of tens to hundreds of micrometers and volumes of nanoliters or picoliters. This is of interest in biological MICROCIRCULATION and used in MICROCHEMISTRY and INVESTIGATIVE TECHNIQUES. Microfluidic
D021141 Nucleic Acid Amplification Techniques Laboratory techniques that involve the in-vitro synthesis of many copies of DNA or RNA from one original template. DNA Amplification Technic,DNA Amplification Technique,DNA Amplification Techniques,Nucleic Acid Amplification Technic,Nucleic Acid Amplification Technique,RNA Amplification Technic,RNA Amplification Technique,RNA Amplification Techniques,Amplification Technics, Nucleic Acid,Amplification Techniques, Nucleic Acid,DNA Amplification Technics,Nucleic Acid Amplification Technics,Nucleic Acid Amplification Test,Nucleic Acid Amplification Tests,RNA Amplification Technics,Technics, Nucleic Acid Amplification,Techniques, Nucleic Acid Amplification,Amplification Technic, DNA,Amplification Technic, RNA,Amplification Technics, DNA,Amplification Technics, RNA,Amplification Technique, DNA,Amplification Technique, RNA,Amplification Techniques, DNA,Amplification Techniques, RNA,Technic, DNA Amplification,Technic, RNA Amplification,Technics, DNA Amplification,Technics, RNA Amplification,Technique, DNA Amplification,Technique, RNA Amplification,Techniques, DNA Amplification,Techniques, RNA Amplification

Related Publications

Yunping Tu, and Dianlong Yang, and Zhongping Zhang, and Xiaobin Dong, and Luyao Liu, and Guijun Miao, and Lulu Zhang, and Xianbo Qiu
January 2020, Critical reviews in food science and nutrition,
Yunping Tu, and Dianlong Yang, and Zhongping Zhang, and Xiaobin Dong, and Luyao Liu, and Guijun Miao, and Lulu Zhang, and Xianbo Qiu
October 2021, Annals of palliative medicine,
Yunping Tu, and Dianlong Yang, and Zhongping Zhang, and Xiaobin Dong, and Luyao Liu, and Guijun Miao, and Lulu Zhang, and Xianbo Qiu
February 2023, Journal of fish diseases,
Yunping Tu, and Dianlong Yang, and Zhongping Zhang, and Xiaobin Dong, and Luyao Liu, and Guijun Miao, and Lulu Zhang, and Xianbo Qiu
January 2022, Frontiers in microbiology,
Yunping Tu, and Dianlong Yang, and Zhongping Zhang, and Xiaobin Dong, and Luyao Liu, and Guijun Miao, and Lulu Zhang, and Xianbo Qiu
February 2011, Analytical chemistry,
Yunping Tu, and Dianlong Yang, and Zhongping Zhang, and Xiaobin Dong, and Luyao Liu, and Guijun Miao, and Lulu Zhang, and Xianbo Qiu
December 2022, Journal of biological engineering,
Yunping Tu, and Dianlong Yang, and Zhongping Zhang, and Xiaobin Dong, and Luyao Liu, and Guijun Miao, and Lulu Zhang, and Xianbo Qiu
October 2022, Microbiology spectrum,
Yunping Tu, and Dianlong Yang, and Zhongping Zhang, and Xiaobin Dong, and Luyao Liu, and Guijun Miao, and Lulu Zhang, and Xianbo Qiu
October 2014, Biosensors & bioelectronics,
Yunping Tu, and Dianlong Yang, and Zhongping Zhang, and Xiaobin Dong, and Luyao Liu, and Guijun Miao, and Lulu Zhang, and Xianbo Qiu
March 2024, Journal of visualized experiments : JoVE,
Yunping Tu, and Dianlong Yang, and Zhongping Zhang, and Xiaobin Dong, and Luyao Liu, and Guijun Miao, and Lulu Zhang, and Xianbo Qiu
January 2019, Biotechnology and applied biochemistry,
Copied contents to your clipboard!