In Situ Hybridization to Identify Stem Cells in the Freshwater Sponge Ephydatia fluviatilis. 2022

Chiaki Kojima, and Noriko Funayama
Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Japan.

Sponges (Porifera) are a large phylum that includes an enormous number of species. They are classified into four classes. Among these four classes, class Demospongiae is the largest and contains more than 90% of sponge species. In the last decade, methodologies for molecular studies and sequencing resources in sponge biology have dramatically advanced and made it possible to clearly define particular types of cells based on the genes they are expressing. Here we describe in detail the method of high-resolution WISH (whole mount in situ hybridization) and dual color fluorescent detection of in situ hybridization (dual color FISH) that we have established to detect particular types of cells, especially their stem cells known as archeocytes, in juveniles of freshwater demosponge, E. fluviatilis.

UI MeSH Term Description Entries
D011161 Porifera The phylum of sponges which are sessile, suspension-feeding, multicellular animals that utilize flagellated cells called choanocytes to circulate water. Most are hermaphroditic. They are probably an early evolutionary side branch that gave rise to no other group of animals. Except for about 150 freshwater species, sponges are marine animals. They are a source of ALKALOIDS; STEROLS; and other complex molecules useful in medicine and biological research. Demospongiae,Sponges (Zoology),Sponge (Zoology),Sponges,Poriferas,Sponge
D005618 Fresh Water Water containing no significant amounts of salts, such as water from RIVERS and LAKES. Freshwater,Fresh Waters,Freshwaters,Water, Fresh,Waters, Fresh
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013234 Stem Cells Relatively undifferentiated cells that retain the ability to divide and proliferate throughout postnatal life to provide progenitor cells that can differentiate into specialized cells. Colony-Forming Units,Mother Cells,Progenitor Cells,Colony-Forming Unit,Cell, Mother,Cell, Progenitor,Cell, Stem,Cells, Mother,Cells, Progenitor,Cells, Stem,Colony Forming Unit,Colony Forming Units,Mother Cell,Progenitor Cell,Stem Cell
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations

Related Publications

Chiaki Kojima, and Noriko Funayama
January 1998, Progress in molecular and subcellular biology,
Chiaki Kojima, and Noriko Funayama
January 1982, Biofizika,
Chiaki Kojima, and Noriko Funayama
January 1986, Developmental and comparative immunology,
Chiaki Kojima, and Noriko Funayama
January 1980, Differentiation; research in biological diversity,
Chiaki Kojima, and Noriko Funayama
August 2015, Current protocols in stem cell biology,
Chiaki Kojima, and Noriko Funayama
January 2010, Current protocols in stem cell biology,
Copied contents to your clipboard!