Fragment of protein L18 from the Escherichia coli ribosome that contains the 5S RNA binding site. 1978

V Newberry, and J Brosius, and R Garrett

A fragment of ribosomal protein L18 was prepared by limited trypsin digestion of a specific complex of L18 and 5S RNA. It was characterised for sequence and the very basic N-terminal region of the protein was found to be absent. No smaller resistant fragments were produced. 5S RNA binding experiments indicated that the basic N-terminal region, from amino acid residues 1 to 17, was not important for the L18-5S RNA association. Under milder trypsin digestion conditions three resistant fragments were produced from the free protein. The largest corresponded to that isolated from the complex. The smaller ones were trimmed slightly further at both N- and C-terminal ends. These smaller fragments did not reassociate with 5S RNA. It was concluded on the basis of the trypsin protection observations and the 5S RNA binding results that the region extending from residues 18 to 117 approximates to the minimum amount of protein required for a specific and stable protein-RNA interaction. The accessibility of the very basic N-terminal region of L18, in the L18-5S RNA complex, suggests that it may be involved, in some way, in the interaction of 5S RNA with 23S RNA.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012335 RNA, Ribosomal The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed) Ribosomal RNA,15S RNA,RNA, 15S
D014357 Trypsin A serine endopeptidase that is formed from TRYPSINOGEN in the pancreas. It is converted into its active form by ENTEROPEPTIDASE in the small intestine. It catalyzes hydrolysis of the carboxyl group of either arginine or lysine. EC 3.4.21.4. Tripcellim,Trypure,beta-Trypsin,beta Trypsin

Related Publications

V Newberry, and J Brosius, and R Garrett
August 1975, FEBS letters,
V Newberry, and J Brosius, and R Garrett
July 1977, Proceedings of the National Academy of Sciences of the United States of America,
V Newberry, and J Brosius, and R Garrett
April 1985, The EMBO journal,
V Newberry, and J Brosius, and R Garrett
November 1988, Nucleic acids research,
V Newberry, and J Brosius, and R Garrett
October 1974, Biochemical and biophysical research communications,
V Newberry, and J Brosius, and R Garrett
February 1981, Biochimica et biophysica acta,
Copied contents to your clipboard!