Coagulation and inflammation in cancer: Limitations and prospects for treatment. 2022

Arun Kumar Singh, and Rishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.

The development of so-called immune checkpoint inhibitors (ICIs), which target specific molecular processes of tumour growth, has had a transformative effect on cancer treatment. Widespread use of antibody-based medicines to inhibit tumour cell immune evasion by modulating T cell responses is becoming more common. Despite this, response rates are still low, and secondary resistance is an issue that arises often. In addition, a wide range of serious adverse effects is triggered by enhancing the immunological response. As a result of an increased mortality rate, a higher prevalence of thrombotic complications is connected with an increased incidence of immunological reactions, complement activation, and skin toxicity. This suggests that the tumour microenvironment's interaction between coagulation and inflammation is important at every stage of the tumour's life cycle. The coagulation system's function in tumour formation is the topic of this review. By better understanding the molecular mechanisms in which tumour cells circulate, plasmatic coagulation and immune system cells are engaged, new therapy options for cancer sufferers may be discovered.

UI MeSH Term Description Entries
D007167 Immunotherapy Manipulation of the host's immune system in treatment of disease. It includes both active and passive immunization as well as immunosuppressive therapy to prevent graft rejection. Immunotherapies
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000082082 Immune Checkpoint Inhibitors Drugs that block negative regulator IMMUNE CHECKPOINT proteins (e.g., PD-1 RECEPTOR and CTLA-4 ANTIGEN) thereby increasing suppressed immune activation in immunotherapies. CTLA-4 Inhibitor,CTLA-4 Inhibitors,Cytotoxic T-Lymphocyte-Associated Protein 4 Inhibitor,Cytotoxic T-Lymphocyte-Associated Protein 4 Inhibitors,Immune Checkpoint Blockade,Immune Checkpoint Blockers,Immune Checkpoint Inhibition,Immune Checkpoint Inhibitor,PD-1 Inhibitor,PD-1 Inhibitors,PD-1-PD-L1 Blockade,PD-L1 Inhibitor,PD-L1 Inhibitors,Programmed Cell Death Protein 1 Inhibitor,Programmed Cell Death Protein 1 Inhibitors,Programmed Death-Ligand 1 Inhibitors,Blockade, PD-1-PD-L1,CTLA 4 Inhibitor,CTLA 4 Inhibitors,Checkpoint Blockade, Immune,Checkpoint Blockers, Immune,Checkpoint Inhibition, Immune,Checkpoint Inhibitor, Immune,Checkpoint Inhibitors, Immune,Cytotoxic T Lymphocyte Associated Protein 4 Inhibitor,Cytotoxic T Lymphocyte Associated Protein 4 Inhibitors,Inhibitor, PD-1,PD 1 Inhibitor,PD 1 Inhibitors,PD 1 PD L1 Blockade,PD L1 Inhibitor,PD L1 Inhibitors,Programmed Death Ligand 1 Inhibitors
D059016 Tumor Microenvironment The milieu surrounding neoplasms consisting of cells, vessels, soluble factors, and molecules, that can influence and be influenced by, the neoplasm's growth. Cancer Microenvironment,Cancer Microenvironments,Microenvironment, Cancer,Microenvironment, Tumor,Microenvironments, Cancer,Microenvironments, Tumor,Tumor Microenvironments
D019139 Tumor Escape The ability of tumors to evade destruction by the IMMUNE SYSTEM. Theories concerning possible mechanisms by which this takes place involve both cellular immunity (IMMUNITY, CELLULAR) and humoral immunity (ANTIBODY FORMATION), and also costimulatory pathways related to CD28 ANTIGENS and B7-1 ANTIGEN. Immune Escape, Tumor,Immune Evasion, Tumor,Tumor Immune Evasion,Evasion, Tumor Immune,Evasions, Tumor Immune,Immune Evasions, Tumor,Tumor Immune Escape,Tumor Immune Evasions

Related Publications

Arun Kumar Singh, and Rishabha Malviya
January 2022, Cancer treatment reviews,
Arun Kumar Singh, and Rishabha Malviya
October 2011, Molecular therapy : the journal of the American Society of Gene Therapy,
Arun Kumar Singh, and Rishabha Malviya
January 2024, Biochimica et biophysica acta. Molecular basis of disease,
Arun Kumar Singh, and Rishabha Malviya
October 2017, Clinical pharmacology and therapeutics,
Arun Kumar Singh, and Rishabha Malviya
August 1999, Current opinion in molecular therapeutics,
Arun Kumar Singh, and Rishabha Malviya
January 1988, Journal of drug issues,
Arun Kumar Singh, and Rishabha Malviya
November 1950, Wiener medizinische Wochenschrift (1946),
Arun Kumar Singh, and Rishabha Malviya
April 2013, Der Urologe. Ausg. A,
Arun Kumar Singh, and Rishabha Malviya
January 1994, European journal of cancer (Oxford, England : 1990),
Arun Kumar Singh, and Rishabha Malviya
October 2022, Letters in applied microbiology,
Copied contents to your clipboard!