3D computational model of oxygen depletion kinetics in brain vasculature during FLASH RT and its implications for in vivo oximetry experiments. 2022

Sunan Cui, and Guillem Pratx
Department of Radiation Oncology, Stanford University, Palo Alto, California, USA.

OBJECTIVE Ultra-high-dose-rate irradiation, also known as FLASH, has been shown to improve the therapeutic ratio of radiation therapy (RT). The mechanism behind this effect has been partially explained by the radiochemical oxygen depletion (ROD) hypothesis, which attributes the protection of the normal tissue to the induction of transient hypoxia by ROD. To better understand the contribution of oxygen to the FLASH effect, it is necessary to measure oxygen (O2 ) in vivo during FLASH irradiation. This study's goal is to determine the temporal resolution required to accurately measure the rapidly changing oxygen concentration immediately after FLASH irradiation. METHODS We conducted a computational simulation of oxygen dynamics using a real vascular model that was constructed from a public fluorescence microscopy dataset. The dynamic distribution of oxygen tension (po2 ) during and after FLASH RT was modeled by a partial differential equation (PDE) considering oxygen diffusion, metabolism, and ROD. The underestimation of ROD due to oxygen recovery was evaluated assuming either complete or partial depletion, and a range of possible values for parameters such as oxygen diffusion, consumption, vascular po2 and vessel density. RESULTS The O2 concentration recovers rapidly after FLASH RT. Assuming a temporal resolution of 0.5 s, the estimated ROD is only 50.7% and 36.7% of its actual value in cases of partial and complete depletion, respectively. Additionally, the underestimation of ROD is highly dependent on the vascular density. To estimate ROD rate with 90% accuracy, temporal resolution on the order of milliseconds is required considering the uncertainty in parameters involved, especially, the diverse vascular density of the tissue. CONCLUSIONS The rapid recovery of O2 poses a great challenge for in vivo ROD measurements during FLASH RT. Temporal resolution on the order of milliseconds is recommended for ROD measurements in the normal tissue. Further work is warranted to investigate whether the same requirements apply to tumors, given their irregular vasculature.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010092 Oximetry The determination of oxygen-hemoglobin saturation of blood either by withdrawing a sample and passing it through a classical photoelectric oximeter or by electrodes attached to some translucent part of the body like finger, earlobe, or skin fold. It includes non-invasive oxygen monitoring by pulse oximetry. Pulse Oximetry,Oximetry, Pulse,Oximetries,Oximetries, Pulse,Pulse Oximetries
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer

Related Publications

Sunan Cui, and Guillem Pratx
February 2022, Radiation research,
Sunan Cui, and Guillem Pratx
September 2021, International journal of radiation oncology, biology, physics,
Sunan Cui, and Guillem Pratx
October 2023, medRxiv : the preprint server for health sciences,
Sunan Cui, and Guillem Pratx
July 2021, International journal of radiation oncology, biology, physics,
Sunan Cui, and Guillem Pratx
September 2023, International journal of radiation oncology, biology, physics,
Sunan Cui, and Guillem Pratx
January 1991, Journal of computer assisted tomography,
Copied contents to your clipboard!