Boric Acid Inhibits RANKL-Stimulated Osteoclastogenesis In Vitro and Attenuates LPS-Induced Bone Loss In Vivo. 2023

Bingbing Xu, and Fanhe Dong, and Pei Yang, and Zihan Wang, and Ming Yan, and Jian Fang, and Yun Zhang
College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China.

Boron and boric acid (BA) can promote osteogenic differentiation and reduce bone resorption, which controls bone growth and maintenance of bone tissue. It has been reported that BA activates PERK-eIF2α signaling to induce cytoplasmic stress granules and cell senescence in human prostate DU-145 cells. However, whether BA can affect osteoclasts formation and LPS-induced inflammatory bone loss, and the role of the PERK-eIF2α pathway in the process, remains unknown. In vitro, RAW264.7 cells were pre-treated with boric acid (BA, 1, 10, 100 μmol/L) for 4 h, and then incubated with receptor activator of nuclear factor-kappaB ligand (RANKL, 50 ng/mL) in the presence or absence of BA for 5 days. CCK-8 and tartrate-resistant acid phosphatase (TRAP) were used to examine cell viability, osteoclastogenesis, and bone resorption; quantitative real-time PCR was performed to examine mRNA levels of c-Fos, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), TRAP, and cathepsin K; western blotting was used to examine protein expressions of glucose-regulated protein 78 (GRP78), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), phosphorylated PERK (p-PERK), eukaryotic initiation factor 2α (eIF2α), and phosphorylated eIF2α (p-eIF2α). In vivo, lipopolysaccharide (LPS)-induced bone loss model in mice was established, and micro-computed tomography (micro-CT) scanning, bone biochemical analysis, and osteoclastogenic cytokines were detected to evaluate the effect of BA on LPS-induced bone loss. In our vitro results showed that BA treatment for 5 days inhibited osteoclasts formation as well as osteoclastic bone resorption in a dose-dependent manner. The expression of osteoclasts marker genes c-Fos, NFATc1, TRAP, and cathepsin K were attenuated by BA. Immunoblotting analysis demonstrated that BA attenuated RANKL-induced PERK-eIF2α pathway activation. The in vivo data indicated that BA significantly prevented lipopolysaccharide (LPS)-induced bone loss. Our findings strongly suggest that BA may be a promising agent for the treatment of bone destructive diseases caused by excessive osteoclastogenesis.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008297 Male Males
D010012 Osteogenesis The process of bone formation. Histogenesis of bone including ossification. Bone Formation,Ossification, Physiologic,Endochondral Ossification,Ossification,Ossification, Physiological,Osteoclastogenesis,Physiologic Ossification,Endochondral Ossifications,Ossification, Endochondral,Ossifications,Ossifications, Endochondral,Osteoclastogeneses,Physiological Ossification
D001862 Bone Resorption Bone loss due to osteoclastic activity. Bone Loss, Osteoclastic,Osteoclastic Bone Loss,Bone Losses, Osteoclastic,Bone Resorptions,Loss, Osteoclastic Bone,Losses, Osteoclastic Bone,Osteoclastic Bone Losses,Resorption, Bone,Resorptions, Bone
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016328 NF-kappa B Ubiquitous, inducible, nuclear transcriptional activator that binds to enhancer elements in many different cell types and is activated by pathogenic stimuli. The NF-kappa B complex is a heterodimer composed of two DNA-binding subunits: NF-kappa B1 and relA. Immunoglobulin Enhancer-Binding Protein,NF-kappa B Complex,Nuclear Factor kappa B,Transcription Factor NF-kB,kappa B Enhancer Binding Protein,Ig-EBP-1,NF-kB,NF-kappaB,Nuclear Factor-Kappab,Complex, NF-kappa B,Enhancer-Binding Protein, Immunoglobulin,Factor NF-kB, Transcription,Factor-Kappab, Nuclear,Ig EBP 1,Immunoglobulin Enhancer Binding Protein,NF kB,NF kappa B Complex,NF kappaB,NF-kB, Transcription Factor,Nuclear Factor Kappab,Transcription Factor NF kB
D016760 Proto-Oncogene Proteins c-fos Cellular DNA-binding proteins encoded by the c-fos genes (GENES, FOS). They are involved in growth-related transcriptional control. c-fos combines with c-jun (PROTO-ONCOGENE PROTEINS C-JUN) to form a c-fos/c-jun heterodimer (TRANSCRIPTION FACTOR AP-1) that binds to the TRE (TPA-responsive element) in promoters of certain genes. Fos B Protein,Fos-Related Antigen,Fos-Related Antigens,c-fos Protein,c-fos Proteins,fos Proto-Oncogene Protein,fos Proto-Oncogene Proteins,p55(c-fos),Antigens, Fos-Related,FRAs,Proto-Oncogene Products c-fos,Proto-Oncogene Proteins fos,p55 c-fos,Antigen, Fos-Related,Fos Related Antigen,Fos Related Antigens,Protein, c-fos,Protein, fos Proto-Oncogene,Proto Oncogene Products c fos,Proto Oncogene Proteins c fos,Proto Oncogene Proteins fos,Proto-Oncogene Protein, fos,c fos Protein,c fos Proteins,fos Proto Oncogene Protein,fos Proto Oncogene Proteins,p55 c fos
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Bingbing Xu, and Fanhe Dong, and Pei Yang, and Zihan Wang, and Ming Yan, and Jian Fang, and Yun Zhang
December 2020, International immunopharmacology,
Bingbing Xu, and Fanhe Dong, and Pei Yang, and Zihan Wang, and Ming Yan, and Jian Fang, and Yun Zhang
April 2019, Journal of cellular biochemistry,
Bingbing Xu, and Fanhe Dong, and Pei Yang, and Zihan Wang, and Ming Yan, and Jian Fang, and Yun Zhang
January 2018, Journal of cellular physiology,
Bingbing Xu, and Fanhe Dong, and Pei Yang, and Zihan Wang, and Ming Yan, and Jian Fang, and Yun Zhang
August 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Bingbing Xu, and Fanhe Dong, and Pei Yang, and Zihan Wang, and Ming Yan, and Jian Fang, and Yun Zhang
March 2020, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Bingbing Xu, and Fanhe Dong, and Pei Yang, and Zihan Wang, and Ming Yan, and Jian Fang, and Yun Zhang
January 2018, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Bingbing Xu, and Fanhe Dong, and Pei Yang, and Zihan Wang, and Ming Yan, and Jian Fang, and Yun Zhang
July 2021, International immunopharmacology,
Bingbing Xu, and Fanhe Dong, and Pei Yang, and Zihan Wang, and Ming Yan, and Jian Fang, and Yun Zhang
August 2020, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Bingbing Xu, and Fanhe Dong, and Pei Yang, and Zihan Wang, and Ming Yan, and Jian Fang, and Yun Zhang
May 2021, Biological trace element research,
Bingbing Xu, and Fanhe Dong, and Pei Yang, and Zihan Wang, and Ming Yan, and Jian Fang, and Yun Zhang
October 2021, Biochemical and biophysical research communications,
Copied contents to your clipboard!