Contact areas of the turnip yellow mosaic virus tRNA-like structure interacting with yeast valyl-tRNA synthetase. 1986

C Florentz, and R Giegé

The tRNA-like structure of turnip yellow mosaic virus is known to be efficiently recognized and aminoacylated by valyl-tRNA synthetase. The present work reports domains in the isolated tRNA-like fragment (159 terminal nucleotides at the 3'-end of the two viral RNAs) in contact with purified yeast valyl-tRNA synthetase. These domains were determined in protection experiments using chemical and enzymatic structural probes. In addition, new data, re-enforcing the validity of the tertiary folding model for the native RNA, are given. In particular, at the level of the amino acid accepting arm it was found that the two phosphate groups flanking the three guanine residues of loop I are inaccessible to ethylnitrosourea. This is in agreement with a higher-order structure of this loop involving "pseudo knotting", as proposed by Rietveld et al. (1982). Valyl-tRNA synthetase efficiently protects the viral RNA against digestion by single-strand-specific S1 nuclease at the level of the anticodon loop. With cobra venom ribonuclease, specific for double-stranded regions of RNA, protection was detected on both sides of the anticodon arm and at the 5'-ends of loop I, a region that is involved in the building up of the acceptor arm. Loop II, which is topologically homologous to the T-loop of canonical tRNA was likewise protected. Weak protection was observed between arms I and II, and at the 3'-side of arm V. This arm, located at the 5'-side of arm IV (homologous to the D-arm of tRNA), does not participate in the pseudo-knotted model of the valine acceptor arm. Ethylnitrosourea was used to determine the phosphates of the tRNA-like structure in close contact with the synthetase. These are grouped in several stretches scattered over the RNA molecule. In agreement with the nuclease digestion results, protected phosphates are located in arms I, II, and III. Additionally, this chemical probe permits detection of other protected phosphates on the 3'-side of arm IV and on both sides of arm V. When displayed in the three-dimensional model of the tRNA-like structure, protected areas are localized on both limbs of the L-shaped RNA. It appears that valyl-tRNA synthetase embraces the entire tRNA-like structure. This is reminiscent of the interaction model of canonical yeast tRNAVal with its cognate synthetase.

UI MeSH Term Description Entries
D009029 Mosaic Viruses Viruses which produce a mottled appearance of the leaves of plants. Mosaic Virus,Virus, Mosaic,Viruses, Mosaic
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000478 Alkylation The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group. Alkylations
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014637 Valine-tRNA Ligase An enzyme that activates valine with its specific transfer RNA. EC 6.1.1.9 Valyl T RNA Synthetase,Val-tRNA Ligase,Valyl-tRNA Synthetase,Ligase, Val-tRNA,Ligase, Valine-tRNA,Synthetase, Valyl-tRNA,Val tRNA Ligase,Valine tRNA Ligase,Valyl tRNA Synthetase

Related Publications

C Florentz, and R Giegé
November 1970, Proceedings of the National Academy of Sciences of the United States of America,
C Florentz, and R Giegé
March 1957, Nature,
C Florentz, and R Giegé
September 1996, Nature structural biology,
C Florentz, and R Giegé
January 1966, Advances in virus research,
C Florentz, and R Giegé
August 1972, Virology,
Copied contents to your clipboard!