Mitochondrial and nonmitochondrial citrate synthases in Saccharomyces cerevisiae are encoded by distinct homologous genes. 1986

M Rosenkrantz, and T Alam, and K S Kim, and B J Clark, and P A Srere, and L P Guarente

Saccharomyces cerevisiae contains two genes, CIT1 and CIT2, encoding functional citrate synthase (K.-S. Kim, M. S. Rosenkrantz, and L. Guarente, Mol. Cell. Biol. 6:1936-1942, 1986). We show here that CIT2 encodes a nonmitochondrial form of citrate synthase. The DNA sequence of CIT2 presented provides a possible explanation for why the CIT2 product, unlike the CIT1 product, fails to be imported into mitochondria. While the products of these two genes are highly homologous, they diverge strikingly at their amino termini. The amino terminus of the CIT1 primary translation product extends 39 residues beyond the amino termini of Escherichia coli and porcine citrate synthases. This extension consists of a typical mitochondrial targeting motif. The amino terminus of the CIT2 primary translation product extends 20 residues beyond the amino termini of the E. coli and porcine enzymes. The CIT2-encoded extension is not homologous to that of CIT1, resulting in a nonmitochondrial localization of the product. The CIT2-encoded extension, however, does bear certain similarities to mitochondrial targeting sequences. The possible role of this sequence in targeting this CIT2 product to a nonmitochondrial organelle is discussed.

UI MeSH Term Description Entries
D007652 Oxo-Acid-Lyases Enzymes that catalyze the cleavage of a carbon-carbon bond of a 3-hydroxy acid. (Dorland, 28th ed) EC 4.1.3. Ketoacid-Lyases,Ketoacid Lyases,Oxo Acid Lyases
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D002950 Citrate (si)-Synthase Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. Citrate Synthase,Synthase, Citrate
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base

Related Publications

M Rosenkrantz, and T Alam, and K S Kim, and B J Clark, and P A Srere, and L P Guarente
December 1999, Biochemistry,
M Rosenkrantz, and T Alam, and K S Kim, and B J Clark, and P A Srere, and L P Guarente
January 1991, Molecular and cellular biology,
M Rosenkrantz, and T Alam, and K S Kim, and B J Clark, and P A Srere, and L P Guarente
August 1988, The Journal of biological chemistry,
M Rosenkrantz, and T Alam, and K S Kim, and B J Clark, and P A Srere, and L P Guarente
July 1995, The EMBO journal,
M Rosenkrantz, and T Alam, and K S Kim, and B J Clark, and P A Srere, and L P Guarente
September 1987, The Journal of biological chemistry,
M Rosenkrantz, and T Alam, and K S Kim, and B J Clark, and P A Srere, and L P Guarente
January 1989, Biotechnology advances,
M Rosenkrantz, and T Alam, and K S Kim, and B J Clark, and P A Srere, and L P Guarente
April 1990, Molecular and cellular biology,
M Rosenkrantz, and T Alam, and K S Kim, and B J Clark, and P A Srere, and L P Guarente
May 1990, Proceedings of the National Academy of Sciences of the United States of America,
M Rosenkrantz, and T Alam, and K S Kim, and B J Clark, and P A Srere, and L P Guarente
June 1994, Current genetics,
M Rosenkrantz, and T Alam, and K S Kim, and B J Clark, and P A Srere, and L P Guarente
August 1991, The Journal of biological chemistry,
Copied contents to your clipboard!