Deleterious metabolic effects of high-carbohydrate, sucrose-containing diets in patients with non-insulin-dependent diabetes mellitus. 1987

A M Coulston, and C B Hollenbeck, and A L Swislocki, and Y D Chen, and G M Reaven

The effects of variations in dietary carbohydrate and fat intake on various aspects of carbohydrate and lipid metabolism were studied in patients with non-insulin-dependent diabetes mellitus (NIDDM). Two test diets were utilized, and they were consumed in random order over two 15-day periods. One diet was low in fat and high in carbohydrate, and corresponded closely to recent recommendations made by the American Diabetes Association (ADA), containing (as percent of total calories) 20 percent protein, 20 percent fat, and 60 percent carbohydrate, with 10 percent of total calories as sucrose. The other diet contained 20 percent protein, 40 percent fat, and 40 percent carbohydrate, with sucrose accounting for 3 percent of total calories. Although plasma fasting glucose and insulin concentrations were similar with both diets, incremental glucose and insulin responses from 8 a.m. to 4 p.m. were higher (p less than 0.01), and mean (+/- SEM) 24-hour urine glucose excretion was significantly greater (55 +/- 16 versus 26 +/- 4 g/24 hours p less than 0.02) in response to the low-fat, high-carbohydrate diet. In addition, fasting and postprandial triglyceride levels were increased (p less than 0.001 and p less than 0.05, respectively) and high-density lipoprotein (HDL) cholesterol concentrations were reduced (p less than 0.02) when patients with NIDDM ate the low-fat, high-carbohydrate diet. Finally, since low-density lipoprotein (LDL) concentrations did not change with diet, the HDL/LDL cholesterol ratio fell in response to the low-fat, high-carbohydrate diet. These results document that low-fat, high-carbohydrate diets, containing moderate amounts of sucrose, similar in composition to the recommendations of the ADA, have deleterious metabolic effects when consumed by patients with NIDDM for 15 days. Until it can be shown that these untoward effects are evanescent, and that long-term ingestion of similar diets will result in beneficial metabolic changes, it seems prudent to avoid the use of low-fat, high-carbohydrate diets containing moderate amounts of sucrose in patients with NIDDM.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D003924 Diabetes Mellitus, Type 2 A subclass of DIABETES MELLITUS that is not INSULIN-responsive or dependent (NIDDM). It is characterized initially by INSULIN RESISTANCE and HYPERINSULINEMIA; and eventually by GLUCOSE INTOLERANCE; HYPERGLYCEMIA; and overt diabetes. Type II diabetes mellitus is no longer considered a disease exclusively found in adults. Patients seldom develop KETOSIS but often exhibit OBESITY. Diabetes Mellitus, Adult-Onset,Diabetes Mellitus, Ketosis-Resistant,Diabetes Mellitus, Maturity-Onset,Diabetes Mellitus, Non-Insulin-Dependent,Diabetes Mellitus, Slow-Onset,Diabetes Mellitus, Stable,MODY,Maturity-Onset Diabetes Mellitus,NIDDM,Diabetes Mellitus, Non Insulin Dependent,Diabetes Mellitus, Noninsulin Dependent,Diabetes Mellitus, Noninsulin-Dependent,Diabetes Mellitus, Type II,Maturity-Onset Diabetes,Noninsulin-Dependent Diabetes Mellitus,Type 2 Diabetes,Type 2 Diabetes Mellitus,Adult-Onset Diabetes Mellitus,Diabetes Mellitus, Adult Onset,Diabetes Mellitus, Ketosis Resistant,Diabetes Mellitus, Maturity Onset,Diabetes Mellitus, Slow Onset,Diabetes, Maturity-Onset,Diabetes, Type 2,Ketosis-Resistant Diabetes Mellitus,Maturity Onset Diabetes,Maturity Onset Diabetes Mellitus,Non-Insulin-Dependent Diabetes Mellitus,Noninsulin Dependent Diabetes Mellitus,Slow-Onset Diabetes Mellitus,Stable Diabetes Mellitus
D004040 Dietary Carbohydrates Carbohydrates present in food comprising digestible sugars and starches and indigestible cellulose and other dietary fibers. The former are the major source of energy. The sugars are in beet and cane sugar, fruits, honey, sweet corn, corn syrup, milk and milk products, etc.; the starches are in cereal grains, legumes (FABACEAE), tubers, etc. (From Claudio & Lagua, Nutrition and Diet Therapy Dictionary, 3d ed, p32, p277) Carbohydrates, Dietary,Carbohydrate, Dietary,Dietary Carbohydrate
D005260 Female Females

Related Publications

A M Coulston, and C B Hollenbeck, and A L Swislocki, and Y D Chen, and G M Reaven
July 1990, American journal of hypertension,
A M Coulston, and C B Hollenbeck, and A L Swislocki, and Y D Chen, and G M Reaven
October 1991, The Journal of pediatrics,
A M Coulston, and C B Hollenbeck, and A L Swislocki, and Y D Chen, and G M Reaven
May 1994, JAMA,
A M Coulston, and C B Hollenbeck, and A L Swislocki, and Y D Chen, and G M Reaven
November 1991, The American journal of clinical nutrition,
A M Coulston, and C B Hollenbeck, and A L Swislocki, and Y D Chen, and G M Reaven
September 1992, The New England journal of medicine,
A M Coulston, and C B Hollenbeck, and A L Swislocki, and Y D Chen, and G M Reaven
August 1995, The New England journal of medicine,
A M Coulston, and C B Hollenbeck, and A L Swislocki, and Y D Chen, and G M Reaven
November 1979, The American journal of clinical nutrition,
A M Coulston, and C B Hollenbeck, and A L Swislocki, and Y D Chen, and G M Reaven
June 1995, Cardiovascular drugs and therapy,
A M Coulston, and C B Hollenbeck, and A L Swislocki, and Y D Chen, and G M Reaven
February 1985, The American journal of clinical nutrition,
A M Coulston, and C B Hollenbeck, and A L Swislocki, and Y D Chen, and G M Reaven
October 1995, European journal of clinical nutrition,
Copied contents to your clipboard!