Dissociation of the lactose repressor protein tetramer using high hydrostatic pressure. 1986

C A Royer, and G Weber, and T J Daly, and K S Matthews

Dissociation of lac repressor tetramer by high hydrostatic pressures was monitored with intrinsic tryptophan fluorescence. With the assumption of complete dissociation to monomer, tryptophan polarization data gave delta V a approximately 170 mL/mol and the concentration for 50% tetramer dissociation, C1/2, was 3.8 X 10(-8) M. Upon addition of inducer, the calculated delta V a increased to approximately 220 mL/mol and the C1/2 decreased to approximately 1 X 10(-8) M, a free energy difference of approximately 0.7 kcal. These results indicate a modest stabilization of the tetramer by the presence of inducer. Monitoring the average energy of tryptophan emission demonstrated that tetramer dissociation takes place over the same range of pressures as evidenced by the polarization data and IPTG dissociation can be more or less superimposed upon tetramer dissociation depending upon the ligand concentration used. Although the two transitions cannot be separated entirely, the delta V a for the region of the pressure dependence dominated by ligand dissociation was 69 mL/mol, an unexpectedly large value. For tetramer modified with methyl methanethiosulfonate, subunit dissociation was shifted to much higher pressures and IPTG dissociation did not occur. The delta V a for subunit association was calculated as approximately 160 mL/mol, and the C1/2 was 3.5 X 10(-9) M. Interactions at the subunit interface of the modified protein are apparently stronger than in the unmodified protein. The absence of inducer dissociation from the MMTS-modified tetramer by the application of high hydrostatic pressure suggests that the volume change for inducer binding to the modified protein is much smaller than that observed for the unmodified repressor.

UI MeSH Term Description Entries
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006874 Hydrostatic Pressure The pressure due to the weight of fluid. Hydrostatic Pressures,Pressure, Hydrostatic,Pressures, Hydrostatic
D013050 Spectrometry, Fluorescence Measurement of the intensity and quality of fluorescence. Fluorescence Spectrophotometry,Fluorescence Spectroscopy,Spectrofluorometry,Fluorescence Spectrometry,Spectrophotometry, Fluorescence,Spectroscopy, Fluorescence
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D046911 Macromolecular Substances Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure. Macromolecular Complexes,Macromolecular Compounds,Macromolecular Compounds and Complexes,Complexes, Macromolecular,Compounds, Macromolecular,Substances, Macromolecular

Related Publications

C A Royer, and G Weber, and T J Daly, and K S Matthews
May 1999, Biochemistry,
C A Royer, and G Weber, and T J Daly, and K S Matthews
July 1992, The Journal of biological chemistry,
C A Royer, and G Weber, and T J Daly, and K S Matthews
December 2017, Biophysical chemistry,
C A Royer, and G Weber, and T J Daly, and K S Matthews
August 2009, Biochemical and biophysical research communications,
C A Royer, and G Weber, and T J Daly, and K S Matthews
July 1994, Biochemistry,
C A Royer, and G Weber, and T J Daly, and K S Matthews
October 2002, Biochemistry,
C A Royer, and G Weber, and T J Daly, and K S Matthews
July 1979, European journal of biochemistry,
C A Royer, and G Weber, and T J Daly, and K S Matthews
September 2012, Biochemistry,
C A Royer, and G Weber, and T J Daly, and K S Matthews
June 1979, The Journal of biological chemistry,
C A Royer, and G Weber, and T J Daly, and K S Matthews
May 2017, Nucleic acids research,
Copied contents to your clipboard!