| D007248 |
Infertility, Male |
The inability of the male to effect FERTILIZATION of an OVUM after a specified period of unprotected intercourse. Male sterility is permanent infertility. |
Sterility, Male,Sub-Fertility, Male,Subfertility, Male,Male Infertility,Male Sterility,Male Sub-Fertility,Male Subfertility,Sub Fertility, Male |
|
| D008297 |
Male |
|
Males |
|
| D008540 |
Meiosis |
A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. |
M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D013090 |
Spermatocytes |
Male germ cells derived from SPERMATOGONIA. The euploid primary spermatocytes undergo MEIOSIS and give rise to the haploid secondary spermatocytes which in turn give rise to SPERMATIDS. |
Spermiocytes,Spermatocyte,Spermiocyte |
|
| D013091 |
Spermatogenesis |
The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA. |
Spermatocytogenesis,Spermiogenesis |
|
| D017353 |
Gene Deletion |
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. |
Deletion, Gene,Deletions, Gene,Gene Deletions |
|
| D051379 |
Mice |
The common name for the genus Mus. |
Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus |
|
| D018345 |
Mice, Knockout |
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. |
Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out |
|
| D034641 |
Heterogeneous-Nuclear Ribonucleoprotein K |
A heterogeneous-nuclear ribonucleoprotein found in the CELL NUCLEUS and the CYTOPLASM. Heterogeneous-nuclear ribonucleoprotein K has been implicated in the regulation of gene expression at nearly all levels: GENETIC TRANSCRIPTION; mRNA processing (RNA PROCESSING, POST-TRANSCRIPTIONAL), mRNA transport, mRNA stability, and translation (TRANSLATION, GENETIC). The hnRNP protein has a strong affinity for polypyrimidine-rich RNA and for single-stranded polypyrimidine-rich DNA. Multiple hnRNP K protein isoforms exist due to alternative splicing and display different nucleic-acid-binding properties. |
Heterogeneous Nuclear Ribonucleoprotein Particle K Protein,dC-Stretch-Binding Protein,hnRNP K,hnRNP K Protein,Heterogeneous Nuclear Ribonucleoprotein K,Ribonucleoprotein K, Heterogeneous-Nuclear,dC Stretch Binding Protein |
|