A peptidase activity exhibited by human serum pseudocholinesterase. 1987

R Boopathy, and A S Balasubramanian

The identity of a peptidase activity with human serum pseudocholinesterase (PsChE) purified to apparent homogeneity was demonstrated by co-elution of both peptidase and PsChE activities from procainamide-Sepharose and concanavalin-A--Sepharose affinity chromatographic columns; comigration on polyacrylamide gel electrophoresis; co-elution on Sephadex G-200 gel filtration and coprecipitation at different dilutions of an antibody raised against purified PsChE. The purified enzyme showed a single protein band on gel electrophoresis under non-denaturing conditions. SDS gel electrophoresis under reducing conditions, followed by silver staining, also gave a single protein band (Mr approximately equal to 90,000). Peptidase activity using different peptides showed the release of C-terminal amino acids. Blocking the carboxy terminal by an amide or ester group did not prevent the hydrolysis of peptides. There was no evidence for release of N-terminal amino acids. Potent anionic or esterase site inhibitors of PsChE, such as eserine sulphate, neostigmine, procainamide, ethopropazine, imipramine, diisopropylfluorophosphate, tetra-isopropylpyrophosphoramide and phenyl boronic acid, did not inhibit the peptidase activity. An anionic site inhibitor (neostigmine or eserine) in combination with an esterase site inhibitor (diisopropylfluorophosphate) also did not inhibit the peptidase. However, the choline esters (acetylcholine, butyrylcholine, propionylcholine, benzoylcholine and succinylcholine) markedly inhibited the peptidase activity in parallel to PsChE. Choline alone or in combination with acetate, butyrate, propionate, benzoate or succinate did not significantly inhibit the peptidase activity. It appeared that inhibitor compounds which bind to both the anionic and esteratic sites simultaneously (like the substrate analogues choline esters) could inhibit the peptidase activity possibly through conformational changes affecting a peptidase domain.

UI MeSH Term Description Entries
D007120 Immunochemistry Field of chemistry that pertains to immunological phenomena and the study of chemical reactions related to antigen stimulation of tissues. It includes physicochemical interactions between antigens and antibodies.
D010447 Peptide Hydrolases Hydrolases that specifically cleave the peptide bonds found in PROTEINS and PEPTIDES. Examples of sub-subclasses for this group include EXOPEPTIDASES and ENDOPEPTIDASES. Peptidase,Peptidases,Peptide Hydrolase,Protease,Proteases,Proteinase,Proteinases,Proteolytic Enzyme,Proteolytic Enzymes,Esteroproteases,Enzyme, Proteolytic,Hydrolase, Peptide
D011480 Protease Inhibitors Compounds which inhibit or antagonize biosynthesis or actions of proteases (ENDOPEPTIDASES). Antiprotease,Endopeptidase Inhibitor,Endopeptidase Inhibitors,Peptidase Inhibitor,Peptidase Inhibitors,Peptide Hydrolase Inhibitor,Peptide Hydrolase Inhibitors,Peptide Peptidohydrolase Inhibitor,Peptide Peptidohydrolase Inhibitors,Protease Antagonist,Protease Antagonists,Antiproteases,Protease Inhibitor,Antagonist, Protease,Antagonists, Protease,Hydrolase Inhibitor, Peptide,Hydrolase Inhibitors, Peptide,Inhibitor, Endopeptidase,Inhibitor, Peptidase,Inhibitor, Peptide Hydrolase,Inhibitor, Peptide Peptidohydrolase,Inhibitor, Protease,Inhibitors, Endopeptidase,Inhibitors, Peptidase,Inhibitors, Peptide Hydrolase,Inhibitors, Peptide Peptidohydrolase,Inhibitors, Protease,Peptidohydrolase Inhibitor, Peptide,Peptidohydrolase Inhibitors, Peptide
D002091 Butyrylcholinesterase An aspect of cholinesterase (EC 3.1.1.8). Pseudocholinesterase,Benzoylcholinesterase,Butyrylthiocholinesterase
D002800 Cholinesterase Inhibitors Drugs that inhibit cholinesterases. The neurotransmitter ACETYLCHOLINE is rapidly hydrolyzed, and thereby inactivated, by cholinesterases. When cholinesterases are inhibited, the action of endogenously released acetylcholine at cholinergic synapses is potentiated. Cholinesterase inhibitors are widely used clinically for their potentiation of cholinergic inputs to the gastrointestinal tract and urinary bladder, the eye, and skeletal muscles; they are also used for their effects on the heart and the central nervous system. Acetylcholinesterase Inhibitor,Acetylcholinesterase Inhibitors,Anti-Cholinesterase,Anticholinesterase,Anticholinesterase Agent,Anticholinesterase Agents,Anticholinesterase Drug,Cholinesterase Inhibitor,Anti-Cholinesterases,Anticholinesterase Drugs,Anticholinesterases,Cholinesterase Inhibitors, Irreversible,Cholinesterase Inhibitors, Reversible,Agent, Anticholinesterase,Agents, Anticholinesterase,Anti Cholinesterase,Anti Cholinesterases,Drug, Anticholinesterase,Drugs, Anticholinesterase,Inhibitor, Acetylcholinesterase,Inhibitor, Cholinesterase,Inhibitors, Acetylcholinesterase,Inhibitors, Cholinesterase,Inhibitors, Irreversible Cholinesterase,Inhibitors, Reversible Cholinesterase,Irreversible Cholinesterase Inhibitors,Reversible Cholinesterase Inhibitors
D002802 Cholinesterases Acylcholineacylhydrolase,Cholase,Cholinesterase
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

R Boopathy, and A S Balasubramanian
October 1975, Masui. The Japanese journal of anesthesiology,
R Boopathy, and A S Balasubramanian
November 1970, Clinica chimica acta; international journal of clinical chemistry,
R Boopathy, and A S Balasubramanian
January 1976, Medecine interne,
R Boopathy, and A S Balasubramanian
January 1964, Progress in medical genetics,
R Boopathy, and A S Balasubramanian
June 1970, Revue canadienne de biologie,
R Boopathy, and A S Balasubramanian
May 1949, The Journal of clinical investigation,
R Boopathy, and A S Balasubramanian
February 1991, Biochemical pharmacology,
R Boopathy, and A S Balasubramanian
November 1983, Zhonghua wai ke za zhi [Chinese journal of surgery],
R Boopathy, and A S Balasubramanian
January 1976, Indian heart journal,
R Boopathy, and A S Balasubramanian
April 1989, Anesthesia and analgesia,
Copied contents to your clipboard!