Insulin-stimulated glucose transport and insulin internalization share a common postbinding step in adipocytes. 1987

A L Jochen, and P Berhanu

We recently demonstrated that chymotrypsin substrate analogues inhibit receptor-mediated insulin internalization in isolated rat adipocytes. In this study, the effect on glucose transport of inhibiting insulin internalization with these agents was examined. Glucose transport was assayed by measuring [3H]-2-deoxyglucose uptake, and internalized insulin was measured after rapidly dissociating surface-bound insulin with an acidic buffer. The chymotrypsin substrate analogue N-acetyl-Tyr ethyl ester inhibited insulin internalization by 85% while increasing surface-bound insulin by 80-110%. Under these conditions, ATP levels were minimally altered, and basal glucose transport was unchanged; however, insulin-stimulated glucose transport was decreased by 86%. The inhibition of insulin-stimulated glucose transport was not overcome by supramaximal concentrations (400 ng/ml) of insulin. When insulin internalization and insulin-stimulated glucose transport were measured in the presence of increasing concentrations of N-acetyl-Tyr ethyl ester (0.1-1 mM), a strong and highly significant correlation (r = .97, P less than .001) was found between inhibition of insulin internalization and inhibition of insulin-stimulated glucose uptake. Fragments of N-acetyl-Tyr ethyl ester that do not inhibit insulin internalization were also without effect on insulin-stimulated glucose transport. In addition to N-acetyl-Tyr ethyl ester, four other chymotrypsin substrate analogues that are effective inhibitors of insulin internalization also markedly inhibited insulin-stimulated glucose transport. These results indicate that insulin internalization and insulin-stimulated glucose transport share a common postbinding step in adipocytes and that this step is inhibitable by chymotrypsin substrate analogues.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007329 Insulin Antagonists Compounds which inhibit or antagonize the biosynthesis or action of insulin. Antagonists, Insulin
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty

Related Publications

A L Jochen, and P Berhanu
June 1979, The American journal of physiology,
A L Jochen, and P Berhanu
March 1992, Diabetes research and clinical practice,
A L Jochen, and P Berhanu
January 2002, Journal of cellular biochemistry,
A L Jochen, and P Berhanu
August 1989, Molecular and cellular endocrinology,
A L Jochen, and P Berhanu
March 1984, The American journal of physiology,
A L Jochen, and P Berhanu
January 1997, The Japanese journal of physiology,
A L Jochen, and P Berhanu
December 1985, The American journal of physiology,
Copied contents to your clipboard!