Interactions of alpha-chymotrypsin and Carlsberg subtilisin with methyl N alpha-acetyl-2-(alkylthio)-L-tryptophanoates. 1986

K Yoshizumi, and K Kamiyama, and T C Shieh, and S Tanaka, and M Ohno

Methyl N alpha-acetyl-2-(alkylthio)-L-tryptophanoates bearing different alkylthio groups were synthesized and employed as substrates for alpha-chymotrypsin and Carlsberg subtilisin in an attempt to investigate the properties of the hydrophobic pocket or cleft (S1 subsite) of the enzymes which accommodates the side-chain of the P1 amino acid residue of the substrates. The derivatives with ethylthio, 2-hydroxyethylthio, 2,3-dihydroxypropylthio, 2-aminoethylthio, carboxymethylthio, 2-carboxyethylthio, 1,2-dicarboxyethylthio, and 2-amino-2-carboxyethylthio (cysteinyl-S) groups were hydrolyzed by alpha-chymotrypsin but with kcat/Km values 4.6 to 15 times smaller than that of methyl N alpha-acetyl-L-tryptophanoate, due mainly to larger Km values. The glutathionyl derivative was only weakly bound to the enzyme. Analyses of the kinetic parameters suggested that the S1 pocket of alpha-chymotrypsin is rather more spacious than has been supposed and is able to interact flexibly with substrates so as to orient the scissile bond to the catalytic residues. On the other hand, none of the derivatives were hydrolyzed by Carlsberg subtilisin but they all inhibited the enzyme with Ki values which are generally smaller than the Km values for N alpha-acetyl-L-aromatic (modified aromatic) amino acid methyl esters. The S1 cleft of Carlsberg subtilisin interacts rather strongly with the derivatives but lacks the flexibility necessary for catalysis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000603 Amino Acids, Sulfur Sulfur Amino Acid,Sulfur Amino Acids,Acid, Sulfur Amino,Acids, Sulfur Amino,Amino Acid, Sulfur
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013381 Subtilisins A family of SERINE ENDOPEPTIDASES isolated from Bacillus subtilis. EC 3.4.21.- Alcalase,AprA-Subtilisin,Bacillus amyloliquefaciens Serine Protease,Bacillus subtilis Alkaline Proteinase,Carlsberg Subtilisin,Maxatase,Nagarse,Novo Alcalase,Profezim,Protease VII,Subtilisin 72,Subtilisin A,Subtilisin BPN',Subtilisin Carlsberg,Subtilisin DY,Subtilisin E,Subtilisin GX,Subtilisin Novo,Subtilopeptidase A,Alcalase, Novo,AprA Subtilisin,Subtilisin, Carlsberg
D014364 Tryptophan An essential amino acid that is necessary for normal growth in infants and for NITROGEN balance in adults. It is a precursor of INDOLE ALKALOIDS in plants. It is a precursor of SEROTONIN (hence its use as an antidepressant and sleep aid). It can be a precursor to NIACIN, albeit inefficiently, in mammals. Ardeydorm,Ardeytropin,L-Tryptophan,L-Tryptophan-ratiopharm,Levotryptophan,Lyphan,Naturruhe,Optimax,PMS-Tryptophan,Trofan,Tryptacin,Tryptan,Tryptophan Metabolism Alterations,ratio-Tryptophan,L Tryptophan,L Tryptophan ratiopharm,PMS Tryptophan,ratio Tryptophan
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

K Yoshizumi, and K Kamiyama, and T C Shieh, and S Tanaka, and M Ohno
April 1961, Biochimica et biophysica acta,
K Yoshizumi, and K Kamiyama, and T C Shieh, and S Tanaka, and M Ohno
January 1963, Biochemistry,
K Yoshizumi, and K Kamiyama, and T C Shieh, and S Tanaka, and M Ohno
June 1973, Journal of biochemistry,
K Yoshizumi, and K Kamiyama, and T C Shieh, and S Tanaka, and M Ohno
October 1974, The Journal of biological chemistry,
K Yoshizumi, and K Kamiyama, and T C Shieh, and S Tanaka, and M Ohno
August 2023, Bioprocess and biosystems engineering,
K Yoshizumi, and K Kamiyama, and T C Shieh, and S Tanaka, and M Ohno
February 1974, The Journal of biological chemistry,
K Yoshizumi, and K Kamiyama, and T C Shieh, and S Tanaka, and M Ohno
December 1962, Biochimica et biophysica acta,
K Yoshizumi, and K Kamiyama, and T C Shieh, and S Tanaka, and M Ohno
April 1973, Archives of biochemistry and biophysics,
K Yoshizumi, and K Kamiyama, and T C Shieh, and S Tanaka, and M Ohno
December 1987, Biochemistry,
Copied contents to your clipboard!