Reassessment of insulin effects on the Vmax and Km values of hexose transport in isolated rat epididymal adipocytes. 1987

N Toyoda, and J E Flanagan, and T Kono

Effects of insulin on the kinetic parameters of hexose transport in rat epididymal adipocytes were re-examined. The transport activity was assessed by measuring the rate of uptake of 3-O-[3H]methyl-D-glucose (MeGlc) under equilibrium exchange and zero-trans conditions. The incubation was carried out at 37 degrees C in an infant incubator. During the incubation, the cell suspension (25%, v/v, in a total volume of 48 microliter) was mechanically swirled at a rate of 600 rpm (r = 2 mm). The swirling facilitated the rapid uptake of MeGlc without stimulating the basal transport activity by "mechanical agitation". The basal and insulin-treated cells were incubated under identical conditions, except for the length of the incubation period. The incubation was terminated by the addition of 350 microliters of 1 mM phloretin, which inhibited transport in approximately 0.06 s. The time course of MeGlc uptake was consistent with the view that the process was a multiple-phase reaction. The initial phase of the reaction was completed when the intracellular distribution space of MeGlc was approximately 1% of the total cell volume. Insulin (10 nM) increased the Vmax value of MeGlc uptake 16-fold in equilibrium exchange experiments and 18-fold in zero-trans experiments. At the same time, the hormone decreased the Km value of MeGlc uptake from 11.7 to 5.4 mM in equilibrium exchange experiments and from 9.7 to 4.8 mM in zero-trans experiments. It is concluded that the major effect of insulin on MeGlc uptake is to increase the Vmax value, but the hormone has the additional effect of lowering the apparent Km value.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008433 Mathematics The deductive study of shape, quantity, and dependence. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Mathematic
D008757 Methylglucosides Methylglucopyranosides
D009004 Monosaccharide Transport Proteins A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES. Hexose Transport Proteins,Band 4.5 Preactin,Erythrocyte Band 4.5 Protein,Glucose Transport-Inducing Protein,Hexose Transporter,4.5 Preactin, Band,Glucose Transport Inducing Protein,Preactin, Band 4.5,Proteins, Monosaccharide Transport,Transport Proteins, Hexose,Transport Proteins, Monosaccharide,Transport-Inducing Protein, Glucose
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000273 Adipose Tissue Specialized connective tissue composed of fat cells (ADIPOCYTES). It is the site of stored FATS, usually in the form of TRIGLYCERIDES. In mammals, there are two types of adipose tissue, the WHITE FAT and the BROWN FAT. Their relative distributions vary in different species with most adipose tissue being white. Fatty Tissue,Body Fat,Fat Pad,Fat Pads,Pad, Fat,Pads, Fat,Tissue, Adipose,Tissue, Fatty
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N Toyoda, and J E Flanagan, and T Kono
September 1988, The Journal of biological chemistry,
N Toyoda, and J E Flanagan, and T Kono
November 1987, Biochemical and biophysical research communications,
N Toyoda, and J E Flanagan, and T Kono
July 1997, Biochemical pharmacology,
N Toyoda, and J E Flanagan, and T Kono
April 1987, Molecular and cellular endocrinology,
N Toyoda, and J E Flanagan, and T Kono
December 1986, Biochemical and biophysical research communications,
N Toyoda, and J E Flanagan, and T Kono
September 1980, Diabetologia,
N Toyoda, and J E Flanagan, and T Kono
February 1981, Biochimica et biophysica acta,
N Toyoda, and J E Flanagan, and T Kono
December 1999, Biochemical pharmacology,
Copied contents to your clipboard!