Role of transcriptional and posttranscriptional regulation in expression of histone genes in Saccharomyces cerevisiae. 1987

D E Lycan, and M A Osley, and L M Hereford

We analyzed the role of posttranscriptional mechanisms in the regulation of histone gene expression in Saccharomyces cerevisiae. The rapid drop in histone RNA levels associated with the inhibition of ongoing DNA replication was postulated to be due to posttranscriptional degradation of histone transcripts. However, in analyzing the sequences required for this response, we showed that the coupling of histone RNA levels to DNA replication was due mostly, if not entirely, to transcriptional regulatory mechanisms. Furthermore, deletions which removed the negative, cell cycle control sequences from the histone promoter also uncoupled histone transcription from DNA replication. We propose that the arrest of DNA synthesis prematurely activates the regulatory pathway used in the normal cell cycle to repress transcription. Although posttranscriptional regulation did not appear to play a significant role in coupling histone RNA levels to DNA replication, it did affect the levels of histone RNA in the cell cycle. Posttranscriptional regulation could apparently restore much of the periodicity of histone RNA accumulation in cells which constitutively transcribed the histone genes. Unlike transcriptional regulation, periodic posttranscriptional regulation appears to operate on a clock which is independent of events in the mitotic DNA cycle. Posttranscriptional recognition of histone RNA must require either sequences in the 3' end of the RNA or an intact three-dimensional structure since H2A- and H2B-lacZ fusion transcripts, containing only 5' histone sequences, were insensitive to posttranscriptional controls.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

D E Lycan, and M A Osley, and L M Hereford
April 1995, Yeast (Chichester, England),
D E Lycan, and M A Osley, and L M Hereford
February 2006, Bioinformatics (Oxford, England),
D E Lycan, and M A Osley, and L M Hereford
May 1991, Biochimica et biophysica acta,
D E Lycan, and M A Osley, and L M Hereford
February 1996, Gene,
D E Lycan, and M A Osley, and L M Hereford
February 1995, Yeast (Chichester, England),
D E Lycan, and M A Osley, and L M Hereford
September 1998, Journal of bacteriology,
D E Lycan, and M A Osley, and L M Hereford
January 2015, Handbook of experimental pharmacology,
D E Lycan, and M A Osley, and L M Hereford
June 2006, Genetics,
D E Lycan, and M A Osley, and L M Hereford
January 1992, Molecular pharmacology,
D E Lycan, and M A Osley, and L M Hereford
January 1985, Molecular and cellular biology,
Copied contents to your clipboard!