Genetically encoded tools for measuring and manipulating metabolism. 2022

Mangyu Choe, and Denis V Titov
Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, USA.

Over the past few years, we have seen an explosion of novel genetically encoded tools for measuring and manipulating metabolism in live cells and animals. Here, we will review the genetically encoded tools that are available, describe how these tools can be used and outline areas where future development is needed in this fast-paced field. We will focus on tools for direct measurement and manipulation of metabolites. Metabolites are master regulators of metabolism and physiology through their action on metabolic enzymes, signaling enzymes, ion channels and transcription factors, among others. We hope that this Perspective will encourage more people to use these novel reagents or even join this exciting new field to develop novel tools for measuring and manipulating metabolism.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

Mangyu Choe, and Denis V Titov
June 2020, Antioxidants (Basel, Switzerland),
Mangyu Choe, and Denis V Titov
May 2021, Nature neuroscience,
Mangyu Choe, and Denis V Titov
April 2022, Journal of the American Chemical Society,
Mangyu Choe, and Denis V Titov
November 2016, Annual review of genetics,
Mangyu Choe, and Denis V Titov
February 2015, Current opinion in biotechnology,
Mangyu Choe, and Denis V Titov
January 2015, Frontiers in pharmacology,
Mangyu Choe, and Denis V Titov
November 2013, Applied microbiology and biotechnology,
Mangyu Choe, and Denis V Titov
October 2017, Current opinion in chemical biology,
Mangyu Choe, and Denis V Titov
June 2022, Journal of the American Chemical Society,
Copied contents to your clipboard!