Effect of diet on insulin binding and glucose transport in rat sarcolemmal vesicles. 1987

G K Grimditch, and R J Barnard, and E Sternlicht, and R H Whitson, and S A Kaplan

The purpose of this study was to compare the effects of a high-fat, high-sucrose diet (HFS) and a low-fat, high-complex carbohydrate diet (LFC) on glucose tolerance, insulin binding, and glucose transport in rat skeletal muscle. During the intravenous glucose tolerance test, peak glucose values at 5 min were significantly higher in the HFS group; 0-, 20-, and 60-min values were similar. Insulin values were significantly higher in the HFS group at all time points (except 60 min), indicating whole-body insulin resistance. Skeletal muscle was responsible, in part, for this insulin resistance, because specific D-glucose transport in isolated sarcolemmal (SL) vesicles under basal conditions was similar between LFC and HFS rats (35 +/- 5 vs. 32 +/- 4 pmol/mg protein), despite the higher plasma insulin levels. Scatchard analyses of insulin binding curves to sarcolemmal vesicles revealed that the Ka of the high-affinity binding sites was significantly reduced by the HFS diet (0.63 +/- 0.09 vs. 0.35 +/- 0.05 X 10(9) M-1); no other binding changes were noted. Specific D-glucose transport in SL vesicles after maximum insulin stimulation (1 U/kg) was significantly depressed in the HFS group (87 +/- 7 vs. 58 +/- 7 pmol/mg protein), indicating that HFS feeding also caused a postbinding defect. These results indicate that the insulin resistance in skeletal muscle associated with a HFS diet is due to both a decrease in the Ka of the high-affinity insulin receptors and a postbinding defect.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D004032 Diet Regular course of eating and drinking adopted by a person or animal. Diets
D004040 Dietary Carbohydrates Carbohydrates present in food comprising digestible sugars and starches and indigestible cellulose and other dietary fibers. The former are the major source of energy. The sugars are in beet and cane sugar, fruits, honey, sweet corn, corn syrup, milk and milk products, etc.; the starches are in cereal grains, legumes (FABACEAE), tubers, etc. (From Claudio & Lagua, Nutrition and Diet Therapy Dictionary, 3d ed, p32, p277) Carbohydrates, Dietary,Carbohydrate, Dietary,Dietary Carbohydrate
D004041 Dietary Fats Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados. Fats, Dietary,Dietary Fat,Fat, Dietary
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

G K Grimditch, and R J Barnard, and E Sternlicht, and R H Whitson, and S A Kaplan
July 1992, Journal of biochemistry,
G K Grimditch, and R J Barnard, and E Sternlicht, and R H Whitson, and S A Kaplan
December 1975, The Journal of clinical investigation,
G K Grimditch, and R J Barnard, and E Sternlicht, and R H Whitson, and S A Kaplan
September 1995, The American journal of physiology,
G K Grimditch, and R J Barnard, and E Sternlicht, and R H Whitson, and S A Kaplan
December 1982, Cell biophysics,
G K Grimditch, and R J Barnard, and E Sternlicht, and R H Whitson, and S A Kaplan
September 1990, The Journal of nutrition,
G K Grimditch, and R J Barnard, and E Sternlicht, and R H Whitson, and S A Kaplan
July 1978, The American journal of physiology,
G K Grimditch, and R J Barnard, and E Sternlicht, and R H Whitson, and S A Kaplan
November 1980, Diabetologia,
G K Grimditch, and R J Barnard, and E Sternlicht, and R H Whitson, and S A Kaplan
October 1980, Biochimica et biophysica acta,
G K Grimditch, and R J Barnard, and E Sternlicht, and R H Whitson, and S A Kaplan
October 1995, The American journal of physiology,
G K Grimditch, and R J Barnard, and E Sternlicht, and R H Whitson, and S A Kaplan
August 1994, Archives of biochemistry and biophysics,
Copied contents to your clipboard!