Effects of a low calcium environment on luteinizing hormone biosynthesis in cultured rat anterior pituitary cells. 1987

J W Ramey, and L A Krummen, and W W Wilfinger, and R F Highsmith, and D M Baldwin

The purpose of this study was to investigate the effects of lowering the extracellular calcium concentration on GnRH-stimulated LH glycosylation and LH translation, as measured by the incorporation of [3H]glucosamine (3H-Gln) and [35S]methionine (35S-Met) into immunoprecipitable LH. Cultured anterior pituitary cells, previously exposed to estradiol (5 X 10(-10) M) to maximize precursor incorporation were incubated for 4 h in normal calcium (2.5 mM) or low calcium medium (less than 15 microM) containing radiolabeled precursors with or without 1 nM GnRH. In the presence of normal calcium, GnRH significantly increased 3H-Gln-labeled LH in the medium (278%) and cells (290%), as well as total (cells plus medium) 3H- Gln LH (280%) compared to the control value (no GnRH). GnRH also significantly increased the 35S-Met LH released into the medium (164%) and total 35S-Met LH (186%) over control values. Depletion of extracellular calcium completely inhibited GnRH-stimulated 3H-Gln LH and 35S-Met LH production. Total immunoreactive LH (iLH), as measured by RIA, was also increased significantly by GnRH treatment in the presence of calcium, but this response was prevented by removal of calcium from the medium. Lowering extracellular calcium had no effect on cellular uptake or incorporation of 3H-Gln or 35S-Met into total trichloroacetic acid-precipitable protein. Approximately 80% of newly synthesized LH was released into the medium in all treatment groups independent of whether calcium or GnRH was present. The specific activity (disintegrations per min/microgram iLH) of radiolabeled LH released into the medium was significantly reduced by treatment with GnRH due to the large amount of unlabeled iLH released into the medium. However, when the cells were incubated in low calcium, the SA of 3H-Gln LH and 35S-Met LH in the medium was unaltered by GnRH, whereas GnRH-stimulated iLH release was inhibited. We conclude that GnRH stimulation of LH glycosylation and LH apoprotein synthesis involves extracellular calcium-dependent events, and the release of newly synthesized LH is closely coupled to LH biosynthesis and is less dependent on extracellular calcium, whereas the GnRH-stimulated release of previously synthesized, stored LH is dependent on extracellular calcium.

UI MeSH Term Description Entries
D007163 Immunosorbent Techniques Techniques for removal by adsorption and subsequent elution of a specific antibody or antigen using an immunosorbent containing the homologous antigen or antibody. Immunoadsorbent Techniques,Immunoadsorbent Technics,Immunosorbent Technics,Immunoadsorbent Technic,Immunoadsorbent Technique,Immunosorbent Technic,Immunosorbent Technique,Technic, Immunoadsorbent,Technic, Immunosorbent,Technics, Immunoadsorbent,Technics, Immunosorbent,Technique, Immunoadsorbent,Technique, Immunosorbent,Techniques, Immunoadsorbent,Techniques, Immunosorbent
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005260 Female Females
D005944 Glucosamine 2-Amino-2-Deoxyglucose,Dona,Dona S,Glucosamine Sulfate,Hespercorbin,Xicil,2 Amino 2 Deoxyglucose,Sulfate, Glucosamine

Related Publications

J W Ramey, and L A Krummen, and W W Wilfinger, and R F Highsmith, and D M Baldwin
April 1987, Endocrinology,
J W Ramey, and L A Krummen, and W W Wilfinger, and R F Highsmith, and D M Baldwin
October 1988, Endocrinology,
J W Ramey, and L A Krummen, and W W Wilfinger, and R F Highsmith, and D M Baldwin
August 1990, Molecular and cellular endocrinology,
J W Ramey, and L A Krummen, and W W Wilfinger, and R F Highsmith, and D M Baldwin
January 1991, Life sciences,
J W Ramey, and L A Krummen, and W W Wilfinger, and R F Highsmith, and D M Baldwin
June 1986, Endocrinology,
J W Ramey, and L A Krummen, and W W Wilfinger, and R F Highsmith, and D M Baldwin
December 1992, Endocrinology,
J W Ramey, and L A Krummen, and W W Wilfinger, and R F Highsmith, and D M Baldwin
March 2014, Experimental biology and medicine (Maywood, N.J.),
J W Ramey, and L A Krummen, and W W Wilfinger, and R F Highsmith, and D M Baldwin
August 1965, Endocrinology,
J W Ramey, and L A Krummen, and W W Wilfinger, and R F Highsmith, and D M Baldwin
January 1994, Biological research,
Copied contents to your clipboard!