Molecular cloning of bile acid 7-dehydroxylase from Eubacterium sp. strain VPI 12708. 1987

J P Coleman, and W B White, and P B Hylemon

Eubacterium sp. strain VPI 12708 is a human intestinal bacterium which contains an inducible bile acid 7-dehydroxylase. Two-dimensional polyacrylamide gel electrophoresis showed that at least four new polypeptides were synthesized after exposure of growing cells to sodium cholate. One of these, of molecular weight 27,000 (PP-27), was implicated in 7-dehydroxylase catalysis. PP-27 was purified to greater than 95% homogeneity by DEAE-cellulose chromatography, high-pressure liquid chromatographic gel filtration, high-pressure liquid chromatography-DEAE chromatography, and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The first 33 amino acid residues of the N terminus of PP-27 were determined with a gas-phase sequencer, and a corresponding mixed oligonucleotide (17-mer) was synthesized. Southern blot analysis of EcoRI total digests of chromosomal DNA showed a 2.2-kilobase fragment which hybridized to the 32P-labeled 17-mer. This fragment was enriched for by size fractionation of an EcoRI total digest of genomic DNA, ligated into the bacterial plasmid pUC8, and used to transform Escherichia coli HB101. Transformants containing the putative 7-dehydroxylase gene were detected with the 32P-labeled 17-mer by colony hybridization techniques. The insert was 2.2 kilobases in length and contained the first 290 bases of the PP-27 gene. Preliminary nucleic acid sequence data correlate with the amino acid sequence. The entire gene was cloned on a 1,150-base-pair TaqI fragment. Western blot analysis of E. coli strains containing these plasmids indicated that PP-27 is expressed in E. coli but is not regulated by bile acids under the conditions used.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010088 Oxidoreductases The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9) Dehydrogenases,Oxidases,Oxidoreductase,Reductases,Dehydrogenase,Oxidase,Reductase
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005051 Eubacterium A genus of gram-positive, rod-shaped bacteria found in cavities of man and animals, animal and plant products, infections of soft tissue, and soil. Some species may be pathogenic. No endospores are produced. The genus Eubacterium should not be confused with EUBACTERIA, one of the three domains of life. Butyribacterium
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006913 Hydroxysteroid Dehydrogenases Enzymes of the oxidoreductase class that catalyze the dehydrogenation of hydroxysteroids. (From Enzyme Nomenclature, 1992) EC 1.1.-. Hydroxysteroid Dehydrogenase,Dehydrogenase, Hydroxysteroid,Dehydrogenases, Hydroxysteroid
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

J P Coleman, and W B White, and P B Hylemon
December 1990, Journal of bacteriology,
J P Coleman, and W B White, and P B Hylemon
August 1990, Journal of bacteriology,
J P Coleman, and W B White, and P B Hylemon
October 1984, Steroids,
J P Coleman, and W B White, and P B Hylemon
January 1999, Journal of lipid research,
J P Coleman, and W B White, and P B Hylemon
April 1992, Journal of bacteriology,
J P Coleman, and W B White, and P B Hylemon
December 1996, Journal of bacteriology,
Copied contents to your clipboard!