Inhibition of replication forks exiting the terminus region of the Escherichia coli chromosome occurs at two loci separated by 5 min. 1987

B de Massy, and S Béjar, and J Louarn, and J M Louarn, and J P Bouché

The replication cycle of Escherichia coli strains duplicating their chromosome from the same plasmid origin placed at various locations or of strains having undergone a major inversion event along the origin-to-terminus axis was studied by marker-frequency analysis. It was observed that replication forks are unidirectionally inhibited at two loci of the termination region: counterclockwise-moving forks are inhibited at terminator T1 (28.5 min), and forks moving in the opposite direction are inhibited at terminator T2 (33.5 min). By determining the strand preference of Okazaki fragments that are specific for markers from the T1-T2 interval, it was shown that this interval is replicated in either direction, depending upon the strain analyzed. In addition, we also observed that forks moving in the "unnatural" direction along each oriC-T1 or -T2 arm are very slow, especially in the one-third portion of the chromosome around the terminators. We propose that this phenomenon is a consequence of nucleoid organization, which is proposed to be symmetrical on the two oriC-T1 or -T2 arms and polarized with respect to the direction of replication. We also propose that T1 and T2 are the terminal limits of these two polarized half-nucleoid bodies.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D013489 Suppression, Genetic Mutation process that restores the wild-type PHENOTYPE in an organism possessing a mutationally altered GENOTYPE. The second "suppressor" mutation may be on a different gene, on the same gene but located at a distance from the site of the primary mutation, or in extrachromosomal genes (EXTRACHROMOSOMAL INHERITANCE). Suppressor Mutation,Genetic Suppression,Genetic Suppressions,Mutation, Suppressor,Mutations, Suppressor,Suppressions, Genetic,Suppressor Mutations

Related Publications

B de Massy, and S Béjar, and J Louarn, and J M Louarn, and J P Bouché
September 1977, Proceedings of the National Academy of Sciences of the United States of America,
B de Massy, and S Béjar, and J Louarn, and J M Louarn, and J P Bouché
April 1987, Proceedings of the National Academy of Sciences of the United States of America,
B de Massy, and S Béjar, and J Louarn, and J M Louarn, and J P Bouché
October 2001, Journal of bacteriology,
B de Massy, and S Béjar, and J Louarn, and J M Louarn, and J P Bouché
April 1992, Journal of bacteriology,
B de Massy, and S Béjar, and J Louarn, and J M Louarn, and J P Bouché
September 1988, Journal of bacteriology,
B de Massy, and S Béjar, and J Louarn, and J M Louarn, and J P Bouché
January 1979, Cold Spring Harbor symposia on quantitative biology,
B de Massy, and S Béjar, and J Louarn, and J M Louarn, and J P Bouché
November 2000, The EMBO journal,
B de Massy, and S Béjar, and J Louarn, and J M Louarn, and J P Bouché
April 1979, Molecular & general genetics : MGG,
B de Massy, and S Béjar, and J Louarn, and J M Louarn, and J P Bouché
November 1988, Cell,
B de Massy, and S Béjar, and J Louarn, and J M Louarn, and J P Bouché
January 2013, Molecular systems biology,
Copied contents to your clipboard!