Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy. 2022

Zhiguo Mao, and Liyu Tian, and Jiao Liu, and Qian Wu, and Ning Wang, and Guangyun Wang, and Yang Wang, and Saiwang Seto
Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, No. 350, Longzihu Road, Xinzhan District, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei 230012, China.

BACKGROUND Mitophagy plays a critical role in cerebral ischemia/reperfusion by timely removal of dysfunctional mitochondria. In mammals, PINK1/Parkin is the most classic pathway mediating mitophagy. And the activation of PINK1/Parkin mediated mitophagy exerts neuroprotective effects during cerebral ischemia reperfusion injury (CIRI). Ligustilide (LIG) is a natural compound extracted from ligusticum chuanxiong hort and angelica sinensis (Oliv.) diels that exerts neuroprotective activity after cerebral ischemia reperfusion injury (CIRI). However, it still remains unclear whether LIG could attenuates cerebral ischemia reperfusion injury (CIRI) through regulating mitophagy mediated by PINK1/Parkin. OBJECTIVE To explore the underlying mechanism of LIG on PINK1/Parkin mediated mitophagy in the hippocampus induced by ischemia reperfusion. METHODS This research used the middle cerebral artery occlusion and reperfusion (MCAO/R) animal model and oxygen-glucose deprivation and reperfusion (OGD/R) as in vitro model. Neurological behavior score, 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and Hematoxylin and Eosin (HE) Staining were used to detect the neuroprotection of LIG in MCAO/R rats. Also, the levels of ROS, mitochondrial membrane potential (MMP) and activities of Na+-K+-ATPase were detected to reflect mitochondrial function. Moreover, transmission electron microscope (TEM) and fluorescence microscope were used to observe mitophagy and the western blot was performed to explore the changes in protein expression in PINK1/Parkin mediated mitophagy. Finally, exact mechanism between neuroprotection of LIG and mitophagy mediated by PINK1/Parkin was explored by cell transfection. RESULTS The results show that LIG improved mitochondrial functions by mitophagy enhancement in vivo and vitro to alleviate CIRI. Whereas, mitophagy enhanced by LIG under CIRI is abolished by PINK1 deficiency and midivi-1, a mitochondrial division inhibitor which has been reported to have the function of mitophagy, which could further aggravate the ischemia-induced brain damage, mitochondrial dysfunction and neuronal injury. CONCLUSIONS LIG could ameliorate the neuronal injury against ischemia stroke by promoting mitophagy via PINK1/Parkin. Targeting PINK1/Parkin mediated mitophagy with LIG treatment might be a promising therapeutic strategy for ischemia stroke.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002545 Brain Ischemia Localized reduction of blood flow to brain tissue due to arterial obstruction or systemic hypoperfusion. This frequently occurs in conjunction with brain hypoxia (HYPOXIA, BRAIN). Prolonged ischemia is associated with BRAIN INFARCTION. Cerebral Ischemia,Ischemic Encephalopathy,Encephalopathy, Ischemic,Ischemia, Cerebral,Brain Ischemias,Cerebral Ischemias,Ischemia, Brain,Ischemias, Cerebral,Ischemic Encephalopathies
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000083242 Ischemic Stroke Stroke due to BRAIN ISCHEMIA resulting in interruption or reduction of blood flow to a part of the brain. When obstruction is due to a BLOOD CLOT formed within in a cerebral blood vessel it is a thrombotic stroke. When obstruction is formed elsewhere and moved to block a cerebral blood vessel (see CEREBRAL EMBOLISM) it is referred to as embolic stroke. Wake-up stroke refers to ischemic stroke occurring during sleep while cryptogenic stroke refers to ischemic stroke of unknown origin. Acute Ischemic Stroke,Cryptogenic Embolism Stroke,Cryptogenic Ischemic Stroke,Cryptogenic Stroke,Ischaemic Stroke,Wake-up Stroke,Acute Ischemic Strokes,Cryptogenic Embolism Strokes,Cryptogenic Ischemic Strokes,Cryptogenic Strokes,Embolism Stroke, Cryptogenic,Ischaemic Strokes,Ischemic Stroke, Acute,Ischemic Stroke, Cryptogenic,Ischemic Strokes,Stroke, Acute Ischemic,Stroke, Cryptogenic,Stroke, Cryptogenic Embolism,Stroke, Cryptogenic Ischemic,Stroke, Ischaemic,Stroke, Ischemic,Stroke, Wake-up,Wake up Stroke,Wake-up Strokes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015107 4-Butyrolactone One of the FURANS with a carbonyl thereby forming a cyclic lactone. It is an endogenous compound made from gamma-aminobutyrate and is the precursor of gamma-hydroxybutyrate. It is also used as a pharmacological agent and solvent. 1,4-Butanolide,4-Hydroxybutyric Acid Lactone,Furanone, tetrahydro-2-,gamma-Butyrolactone,Dihydro-2(3H)-furanone,1,4 Butanolide,4 Butyrolactone,4 Hydroxybutyric Acid Lactone,Furanone, tetrahydro 2,Lactone, 4-Hydroxybutyric Acid,gamma Butyrolactone
D015424 Reperfusion Restoration of blood supply to tissue which is ischemic due to decrease in normal blood supply. The decrease may result from any source including atherosclerotic obstruction, narrowing of the artery, or surgical clamping. It is primarily a procedure for treating infarction or other ischemia, by enabling viable ischemic tissue to recover, thus limiting further necrosis. However, it is thought that reperfusion can itself further damage the ischemic tissue, causing REPERFUSION INJURY. Reperfusions
D015427 Reperfusion Injury Adverse functional, metabolic, or structural changes in tissues that result from the restoration of blood flow to the tissue (REPERFUSION) following ISCHEMIA. Ischemia-Reperfusion Injury,Injury, Ischemia-Reperfusion,Injury, Reperfusion,Reperfusion Damage,Damage, Reperfusion,Injury, Ischemia Reperfusion,Ischemia Reperfusion Injury,Ischemia-Reperfusion Injuries,Reperfusion Damages,Reperfusion Injuries
D044767 Ubiquitin-Protein Ligases A diverse class of enzymes that interact with UBIQUITIN-CONJUGATING ENZYMES and ubiquitination-specific protein substrates. Each member of this enzyme group has its own distinct specificity for a substrate and ubiquitin-conjugating enzyme. Ubiquitin-protein ligases exist as both monomeric proteins multiprotein complexes. Ubiquitin-Protein Ligase,E3 Ligase,E3 Ubiquitin Ligase,Ubiquitin Ligase E3,Ubiquitin-Protein Ligase E3,Ligase E3, Ubiquitin,Ligase E3, Ubiquitin-Protein,Ligase, E3,Ligase, E3 Ubiquitin,Ligase, Ubiquitin-Protein,Ligases, Ubiquitin-Protein,Ubiquitin Ligase, E3,Ubiquitin Protein Ligase,Ubiquitin Protein Ligase E3,Ubiquitin Protein Ligases

Related Publications

Zhiguo Mao, and Liyu Tian, and Jiao Liu, and Qian Wu, and Ning Wang, and Guangyun Wang, and Yang Wang, and Saiwang Seto
October 2019, Nitric oxide : biology and chemistry,
Zhiguo Mao, and Liyu Tian, and Jiao Liu, and Qian Wu, and Ning Wang, and Guangyun Wang, and Yang Wang, and Saiwang Seto
June 2025, European journal of pharmacology,
Zhiguo Mao, and Liyu Tian, and Jiao Liu, and Qian Wu, and Ning Wang, and Guangyun Wang, and Yang Wang, and Saiwang Seto
August 2025, Journal of biochemical and molecular toxicology,
Zhiguo Mao, and Liyu Tian, and Jiao Liu, and Qian Wu, and Ning Wang, and Guangyun Wang, and Yang Wang, and Saiwang Seto
January 2024, Cellular and molecular gastroenterology and hepatology,
Zhiguo Mao, and Liyu Tian, and Jiao Liu, and Qian Wu, and Ning Wang, and Guangyun Wang, and Yang Wang, and Saiwang Seto
November 2024, Chinese medical journal,
Zhiguo Mao, and Liyu Tian, and Jiao Liu, and Qian Wu, and Ning Wang, and Guangyun Wang, and Yang Wang, and Saiwang Seto
May 2025, Brain research bulletin,
Zhiguo Mao, and Liyu Tian, and Jiao Liu, and Qian Wu, and Ning Wang, and Guangyun Wang, and Yang Wang, and Saiwang Seto
November 2025, Neuropharmacology,
Zhiguo Mao, and Liyu Tian, and Jiao Liu, and Qian Wu, and Ning Wang, and Guangyun Wang, and Yang Wang, and Saiwang Seto
August 2023, Shock (Augusta, Ga.),
Zhiguo Mao, and Liyu Tian, and Jiao Liu, and Qian Wu, and Ning Wang, and Guangyun Wang, and Yang Wang, and Saiwang Seto
February 2024, European journal of pharmacology,
Zhiguo Mao, and Liyu Tian, and Jiao Liu, and Qian Wu, and Ning Wang, and Guangyun Wang, and Yang Wang, and Saiwang Seto
December 2025, Toxicology and applied pharmacology,
Copied contents to your clipboard!