X-ray fluorescence microscopy methods for biological tissues. 2022

M Jake Pushie, and Nicole J Sylvain, and Huishu Hou, and Mark J Hackett, and Michael E Kelly, and Samuel M Webb
Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada.

Synchrotron-based X-ray fluorescence microscopy is a flexible tool for identifying the distribution of trace elements in biological specimens across a broad range of sample sizes. The technique is not particularly limited by sample type and can be performed on ancient fossils, fixed or fresh tissue specimens, and in some cases even live tissue and live cells can be studied. The technique can also be expanded to provide chemical specificity to elemental maps, either at individual points of interest in a map or across a large field of view. While virtually any sample type can be characterized with X-ray fluorescence microscopy, common biological sample preparation methods (often borrowed from other fields, such as histology) can lead to unforeseen pitfalls, resulting in altered element distributions and concentrations. A general overview of sample preparation and data-acquisition methods for X-ray fluorescence microscopy is presented, along with outlining the general approach for applying this technique to a new field of investigation for prospective new users. Considerations for improving data acquisition and quality are reviewed as well as the effects of sample preparation, with a particular focus on soft tissues. The effects of common sample pretreatment steps as well as the underlying factors that govern which, and to what extent, specific elements are likely to be altered are reviewed along with common artifacts observed in X-ray fluorescence microscopy data.

UI MeSH Term Description Entries
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D011446 Prospective Studies Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group. Prospective Study,Studies, Prospective,Study, Prospective
D013052 Spectrometry, X-Ray Emission The spectrometric analysis of fluorescent X-RAYS, i.e. X-rays emitted after bombarding matter with high energy particles such as PROTONS; ELECTRONS; or higher energy X-rays. Identification of ELEMENTS by this technique is based on the specific type of X-rays that are emitted which are characteristic of the specific elements in the material being analyzed. The characteristic X-rays are distinguished and/or quantified by either wavelength dispersive or energy dispersive methods. Particle-Induced X-Ray Emission Spectrometry,Proton-Induced X-Ray Emission Spectrometry,Spectrometry, Particle-Induced X-Ray Emission,Spectrometry, Proton-Induced X-Ray Emission,Spectrometry, X-Ray Fluorescence,X-Ray Emission Spectrometry,X-Ray Emission Spectroscopy,X-Ray Fluorescence Spectrometry,Energy Dispersive X-Ray Fluorescence Spectrometry,Energy Dispersive X-Ray Fluorescence Spectroscopy,Energy Dispersive X-Ray Spectrometry,Energy Dispersive X-Ray Spectroscopy,Particle Induced X Ray Emission Spectrometry,Proton Induced X Ray Emission Spectrometry,Spectrometry, Particle Induced X Ray Emission,Spectrometry, Proton Induced X Ray Emission,Spectrometry, Xray Emission,Wavelength Dispersive X-Ray Fluorescence Spectrometry,Wavelength Dispersive X-Ray Fluorescence Spectroscopy,Wavelength Dispersive X-Ray Spectrometry,Wavelength Dispersive X-Ray Spectroscopy,X-Ray Fluorescence Spectroscopy,Xray Emission Spectroscopy,Emission Spectrometry, X-Ray,Emission Spectrometry, Xray,Emission Spectroscopy, X-Ray,Emission Spectroscopy, Xray,Energy Dispersive X Ray Fluorescence Spectrometry,Energy Dispersive X Ray Fluorescence Spectroscopy,Energy Dispersive X Ray Spectrometry,Energy Dispersive X Ray Spectroscopy,Fluorescence Spectrometry, X-Ray,Fluorescence Spectroscopy, X-Ray,Spectrometry, X Ray Emission,Spectrometry, X Ray Fluorescence,Spectroscopy, X-Ray Emission,Spectroscopy, X-Ray Fluorescence,Spectroscopy, Xray Emission,Wavelength Dispersive X Ray Fluorescence Spectrometry,Wavelength Dispersive X Ray Fluorescence Spectroscopy,Wavelength Dispersive X Ray Spectrometry,Wavelength Dispersive X Ray Spectroscopy,X Ray Emission Spectrometry,X Ray Emission Spectroscopy,X Ray Fluorescence Spectrometry,X Ray Fluorescence Spectroscopy,X-Ray Fluorescence Spectroscopies,Xray Emission Spectrometry
D014131 Trace Elements A group of chemical elements that are needed in minute quantities for the proper growth, development, and physiology of an organism. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Biometal,Biometals,Trace Element,Trace Mineral,Trace Minerals,Element, Trace,Elements, Trace,Mineral, Trace,Minerals, Trace
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations
D017356 Synchrotrons Devices for accelerating protons or electrons in closed orbits where the accelerating voltage and magnetic field strength varies (the accelerating voltage is held constant for electrons) in order to keep the orbit radius constant. Synchrotron

Related Publications

M Jake Pushie, and Nicole J Sylvain, and Huishu Hou, and Mark J Hackett, and Michael E Kelly, and Samuel M Webb
August 2012, Health physics,
M Jake Pushie, and Nicole J Sylvain, and Huishu Hou, and Mark J Hackett, and Michael E Kelly, and Samuel M Webb
January 2018, MethodsX,
M Jake Pushie, and Nicole J Sylvain, and Huishu Hou, and Mark J Hackett, and Michael E Kelly, and Samuel M Webb
September 2021, The Analyst,
M Jake Pushie, and Nicole J Sylvain, and Huishu Hou, and Mark J Hackett, and Michael E Kelly, and Samuel M Webb
October 1972, The International journal of applied radiation and isotopes,
M Jake Pushie, and Nicole J Sylvain, and Huishu Hou, and Mark J Hackett, and Michael E Kelly, and Samuel M Webb
July 2010, Journal of synchrotron radiation,
M Jake Pushie, and Nicole J Sylvain, and Huishu Hou, and Mark J Hackett, and Michael E Kelly, and Samuel M Webb
December 1984, Czasopismo stomatologiczne,
M Jake Pushie, and Nicole J Sylvain, and Huishu Hou, and Mark J Hackett, and Michael E Kelly, and Samuel M Webb
November 1990, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M Jake Pushie, and Nicole J Sylvain, and Huishu Hou, and Mark J Hackett, and Michael E Kelly, and Samuel M Webb
November 2009, Physical review letters,
M Jake Pushie, and Nicole J Sylvain, and Huishu Hou, and Mark J Hackett, and Michael E Kelly, and Samuel M Webb
October 2017, Biomedical optics express,
M Jake Pushie, and Nicole J Sylvain, and Huishu Hou, and Mark J Hackett, and Michael E Kelly, and Samuel M Webb
November 2017, Analytical chemistry,
Copied contents to your clipboard!