Survival strategies of the yeast plasmid two-micron circle. 1986

F C Volkert, and L C Wu, and P A Fisher, and J R Broach

The multicopy yeast plasmid 2-micron circle uses a number of strategies to insure its persistence in its host. The plasmid confers no selective phenotype to the cell in which it is resident. Nonetheless, the plasmid is lost at less than 1 per 10(5) cell divisions during continuous exponential growth. We have determined that the plasmid persists at least in part due to the ability of the plasmid to amplify its mean copy number when its cellular copy level is low and to distribute plasmid molecules equally between mother and daughter cells at mitosis. We have found that amplification of plasmid copy number occurs by a novel mechanism in which site-specific recombination induces a transient shift in the mode of replication from theta to rolling circle. Equitable partitioning of plasmid molecules requires plasmid-encoded proteins and a centromere-like segment on the plasmid. We have accumulated evidence consistent with a model of partitioning in which the partitioning proteins form a transnuclear structure that is responsible for distributing plasmid molecules throughout the nucleus prior to cell division. In this chapter we describe evidence supporting the existence and mode of action of these two plasmid strategies and discuss the extent to which these strategies may be a pervasive facet of the biology of eukaryotic extrachromosomal elements.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D004254 DNA Nucleotidyltransferases Enzymes that catalyze the incorporation of deoxyribonucleotides into a chain of DNA. EC 2.7.7.-. Nucleotidyltransferases, DNA
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D013104 Spheroplasts Cells, usually bacteria or yeast, which have partially lost their cell wall, lost their characteristic shape and become round. Spheroplast

Related Publications

F C Volkert, and L C Wu, and P A Fisher, and J R Broach
December 1986, Molecular & general genetics : MGG,
F C Volkert, and L C Wu, and P A Fisher, and J R Broach
January 1986, Basic life sciences,
F C Volkert, and L C Wu, and P A Fisher, and J R Broach
December 1983, Proceedings of the National Academy of Sciences of the United States of America,
F C Volkert, and L C Wu, and P A Fisher, and J R Broach
March 1988, Yeast (Chichester, England),
F C Volkert, and L C Wu, and P A Fisher, and J R Broach
January 1984, Cold Spring Harbor symposia on quantitative biology,
F C Volkert, and L C Wu, and P A Fisher, and J R Broach
January 1994, Cellular & molecular biology research,
F C Volkert, and L C Wu, and P A Fisher, and J R Broach
February 1982, Cell,
F C Volkert, and L C Wu, and P A Fisher, and J R Broach
September 1980, Biochemical and biophysical research communications,
F C Volkert, and L C Wu, and P A Fisher, and J R Broach
July 1988, Nucleic acids research,
F C Volkert, and L C Wu, and P A Fisher, and J R Broach
March 1986, Journal of theoretical biology,
Copied contents to your clipboard!