Dynamics of fd coat protein in the bacteriophage. 1987

L A Colnago, and K G Valentine, and S J Opella

The dynamics of the coat protein in fd bacteriophage are described with solid-state 15N and 2H NMR experiments. The virus particles and the coat protein subunits are immobile on the time scales of the 15N chemical shift anisotropy (10(3) Hz) and 2H quadrupole (10(6) Hz) interactions. Previously we have shown that the Trp-26 side chain is immobile, that the two Tyr and three Phe side chains undergo only rapid twofold jump motions about their C beta-C gamma bond axis [Gall, C. M., Cross, T. A., DiVerdi, J. A., & Opella, S. J. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 101-105], and that most of the backbone peptide linkages are highly constrained but do undergo rapid small amplitude motions [Cross, T. A., & Opella, S. J. (1982) J. Mol. Biol. 159, 543-549] in the coat protein subunits in the virus particles. In this paper, we demonstrate that the four N-terminal residues of the coat protein subunits are highly mobile, since both backbone and side-chain sites of these residues undergo large amplitude motions that are rapid on the time scales of the solid-state NMR experiments. In addition, the dynamics of the methyl-containing aliphatic residues Ala, Leu, Val, Thr, and Met are analyzed. Large amplitude jump motions are observed in nearly all of these side chains even though, with the exception of the N-terminal residue Ala-1, their backbone peptide linkages are highly constrained. The established information about the dynamics of the structural form of fd coat protein in the virus particle is summarized qualitatively.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002213 Capsid The outer protein protective shell of a virus, which protects the viral nucleic acid. Capsids are composed of repeating units (capsomers or capsomeres) of CAPSID PROTEINS which when assembled together form either an icosahedral or helical shape. Procapsid,Prohead,Capsids,Procapsids,Proheads
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

L A Colnago, and K G Valentine, and S J Opella
June 1967, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
L A Colnago, and K G Valentine, and S J Opella
January 1982, Proceedings of the National Academy of Sciences of the United States of America,
L A Colnago, and K G Valentine, and S J Opella
December 1967, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
L A Colnago, and K G Valentine, and S J Opella
April 1978, Biochemistry,
L A Colnago, and K G Valentine, and S J Opella
August 1982, Journal of molecular biology,
L A Colnago, and K G Valentine, and S J Opella
March 1976, Nature,
L A Colnago, and K G Valentine, and S J Opella
September 1974, Journal of molecular biology,
L A Colnago, and K G Valentine, and S J Opella
June 1978, Biochimica et biophysica acta,
L A Colnago, and K G Valentine, and S J Opella
November 1992, Biophysical journal,
L A Colnago, and K G Valentine, and S J Opella
November 1966, Journal of molecular biology,
Copied contents to your clipboard!