Influence of lipid environment on insulin binding in cultured hepatoma cells. 1987

C Bruneau, and C Staedel-Flaig, and G Crémel, and C Leray, and J P Beck, and P Hubert

The influence of alterations of plasma membrane physico-chemical properties on insulin binding have been characterized in an insulin-sensitive rat hepatoma cell line adapted to grow for several generations in culture medium enriched with linoleic acid (18:2) or with 25-hydroxycholesterol. The cells took up 18:2 and 25-hydroxycholesterol added to the culture medium, without exhibiting any sign of intolerance or intoxication. These compounds respectively increased and decreased membrane fluidity at 37 degrees C. The cells demonstrated extensive changes in insulin binding parameters in response to experimental modifications of their membrane lipid composition. When determined at 4 degrees C, insulin receptors were present in the control cells at 136,000 sites/cell but this fell to 111,000 (P less than 0.05) in cells enriched in 18:2, and rose to 176,000 (P less than 0.001) in hydroxysterol-grown cells. According to a two-site model, the main effect of 18:2 was a significant increase of the number of high-affinity sites with a concomitant decrease of low-affinity sites. The hydroxysterol had the opposite effects on these parameters. The high-affinity insulin binding capacity of the hepatoma cells was affected by lipid supplementation in a similar way, whether it was determined at 4 degrees C or at 37 degrees C. Assuming a negative cooperativity model, 18:2 enhanced the degree of negative cooperativity among the sites, while 25-hydroxycholesterol reduced it. The time-course of insulin-induced receptor down-regulation was accelerated in the cells enriched in polyunsaturated fatty acids, but reduced in cells exposed to 25-hydroxycholesterol. These insulin-binding alterations cannot be directly related to modifications of cellular growth rate, receptor internalization or membrane fluidity per se, and are discussed as being more likely due to membrane lipid composition than to overall cell metabolism modifications.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008041 Linoleic Acids Eighteen-carbon essential fatty acids that contain two double bonds. Acids, Linoleic
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes

Related Publications

C Bruneau, and C Staedel-Flaig, and G Crémel, and C Leray, and J P Beck, and P Hubert
January 1987, Endocrine research,
C Bruneau, and C Staedel-Flaig, and G Crémel, and C Leray, and J P Beck, and P Hubert
December 1981, Molecular and cellular endocrinology,
C Bruneau, and C Staedel-Flaig, and G Crémel, and C Leray, and J P Beck, and P Hubert
August 1980, FEBS letters,
C Bruneau, and C Staedel-Flaig, and G Crémel, and C Leray, and J P Beck, and P Hubert
August 1987, The Journal of clinical investigation,
C Bruneau, and C Staedel-Flaig, and G Crémel, and C Leray, and J P Beck, and P Hubert
August 1986, Gastroenterologia Japonica,
C Bruneau, and C Staedel-Flaig, and G Crémel, and C Leray, and J P Beck, and P Hubert
January 1981, Endocrinology,
C Bruneau, and C Staedel-Flaig, and G Crémel, and C Leray, and J P Beck, and P Hubert
June 1988, Diabetologia,
C Bruneau, and C Staedel-Flaig, and G Crémel, and C Leray, and J P Beck, and P Hubert
January 1985, Biochimie,
C Bruneau, and C Staedel-Flaig, and G Crémel, and C Leray, and J P Beck, and P Hubert
October 1981, Journal of biochemistry,
C Bruneau, and C Staedel-Flaig, and G Crémel, and C Leray, and J P Beck, and P Hubert
December 1975, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!