Analysis with monoclonal antibodies of the molecular and cellular heterogeneity of human high molecular weight melanoma associated antigen. 1987

M R Ziai, and L Imberti, and M R Nicotra, and G Badaracco, and O Segatto, and P G Natali, and S Ferrone

Monoclonal antibodies (MoAbs) 225.28, 657.9, and 902.5 recognizing distinct epitopes of the human high molecular weight melanoma associated antigen (HMW-MAA) were used to investigate the molecular and cellular heterogeneity of the HMW-MAA synthesized by human melanoma cells. Sequential immunodepletion and immunoprecipitation experiments showed that not all HMW-MAA molecules synthesized by a melanoma cell line express the antigenic determinants recognized by the three monoclonal antibodies. The majority of the HMW-MAA molecules expressed the epitope defined by MoAb 657.9 since this monoclonal antibody depleted the melanoma cell lysate of all antigen molecules recognized by the other two monoclonal antibodies. Depletion with MoAb 902.5 resulted in the removal of a large proportion of the HMW-MAA molecules precipitated by MoAb 657.9. The MoAb 225.28 depleted the cell lysate of only a fraction of the HMW-MAA molecules recognized by MoAb 657.9 and 902.5. Two-dimensional gel electrophoresis and peptide mapping analysis did not detect any significant difference among the HMW-MAA immunoprecipitated by the three monoclonal antibodies. The heterogeneity of the epitopes recognized by the three monoclonal antibodies is, at least partly, due to glycosylation of the antigen molecule, since treatment of melanoma cells with glycosidases differentially affects their ability to bind the three anti-HMW-MAA monoclonal antibodies. Fluorescent activated cell sorting analysis of the melanoma cells showed that the heterogeneity exhibited by the HMW-MAA is not due to the presence of different cell clones in the culture but reflects a differential distribution of epitopes on the HMW-MAA expressed on the surface of individual cells. Immunohistochemical staining of surgically removed benign and malignant lesions of melanocytic origin, of normal tissues, and of malignant lesions has shown a differential tissue distribution of the determinants recognized by the three monoclonal antibodies. Staining of melanoma cell lines and of surgically removed melanoma lesions with combinations of the three monoclonal antibodies did not cause any significant change of the percentage of stained cells but markedly increased the intensity of staining. These results indicate that combinations of monoclonal antibodies to distinct determinants of HMW-MAA can markedly increase the sensitivity of immunohistochemical techniques to detect melanoma cells.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000951 Antigens, Neoplasm Proteins, glycoprotein, or lipoprotein moieties on surfaces of tumor cells that are usually identified by monoclonal antibodies. Many of these are of either embryonic or viral origin. Neoplasm Antigens,Tumor Antigen,Tumor Antigens,Antigen, Tumor,Antigens, Tumor

Related Publications

M R Ziai, and L Imberti, and M R Nicotra, and G Badaracco, and O Segatto, and P G Natali, and S Ferrone
January 1983, Cancer immunology, immunotherapy : CII,
M R Ziai, and L Imberti, and M R Nicotra, and G Badaracco, and O Segatto, and P G Natali, and S Ferrone
December 1989, Journal of immunology (Baltimore, Md. : 1950),
M R Ziai, and L Imberti, and M R Nicotra, and G Badaracco, and O Segatto, and P G Natali, and S Ferrone
December 1982, Clinical chemistry,
M R Ziai, and L Imberti, and M R Nicotra, and G Badaracco, and O Segatto, and P G Natali, and S Ferrone
September 1987, Cancer research,
M R Ziai, and L Imberti, and M R Nicotra, and G Badaracco, and O Segatto, and P G Natali, and S Ferrone
August 1987, Cancer research,
M R Ziai, and L Imberti, and M R Nicotra, and G Badaracco, and O Segatto, and P G Natali, and S Ferrone
July 1985, Journal of immunology (Baltimore, Md. : 1950),
M R Ziai, and L Imberti, and M R Nicotra, and G Badaracco, and O Segatto, and P G Natali, and S Ferrone
March 2009, Cancer immunology, immunotherapy : CII,
M R Ziai, and L Imberti, and M R Nicotra, and G Badaracco, and O Segatto, and P G Natali, and S Ferrone
December 1990, The Journal of clinical investigation,
M R Ziai, and L Imberti, and M R Nicotra, and G Badaracco, and O Segatto, and P G Natali, and S Ferrone
July 2005, Cancer immunology, immunotherapy : CII,
M R Ziai, and L Imberti, and M R Nicotra, and G Badaracco, and O Segatto, and P G Natali, and S Ferrone
March 1983, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!