ABSCISIC ACID INSENSITIVE 5 mediates light-ABA/gibberellin crosstalk networks during seed germination. 2022

Zenglin Li, and Xiaofeng Luo, and Lei Wang, and Kai Shu
School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710012, China.

Appropriate timing of seed germination is crucial for plant survival and has important implications for agricultural production. Timely germination relies on harmonious interactions between endogenous developmental signals, especially abscisic acid (ABA) and gibberellins (GAs), and environmental cues such as light. Recently, a series of investigations of a three-way crosstalk between phytochromes, ABA, and GAs in the regulation of seed germination demonstrated that the transcription factor ABSCISIC ACID INSENSITIVE 5 (ABI5) is a central mediator in the light-ABA/GA cascades. Here, we review current knowledge of ABI5 as a key player in light-, ABA-, and GA-signaling pathways that precisely control seed germination. We highlight recent advances in ABI5-related studies, focusing on the regulation of seed germination, which is strictly controlled at both the transcriptional and the protein levels by numerous light-regulated factors. We further discuss the components of ABA and GA signaling pathways that could regulate ABI5 during seed germination, including transcription factors, E3 ligases, protein kinases, and phosphatases. The precise molecular mechanisms by which ABI5 mediates ABA-GA antagonistic crosstalk during seed germination are also discussed. Finally, some potential research hotspots underlying ABI5-mediated seed germination regulatory networks are proposed.

UI MeSH Term Description Entries
D005875 Gibberellins A class of plant growth hormone isolated from cultures of GIBBERELLA FUJIKUROI, a fungus causing Bakanae disease in rice. There are many different members of the family as well as mixtures of multiple members; all are diterpenoid acids based on the gibberellane skeleton. Gibberellin
D000040 Abscisic Acid Abscission-accelerating plant growth substance isolated from young cotton fruit, leaves of sycamore, birch, and other plants, and from potatoes, lemons, avocados, and other fruits. 2,4-Pentadienoic acid, 5-(1-hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl)-3-methyl-, (S-(Z,E))-,Abscisic Acid Monoammonium Salt, (R)-Isomer,Abscisic Acid, (+,-)-Isomer,Abscisic Acid, (E,E)-(+-)-Isomer,Abscisic Acid, (E,Z)-(+,-)-Isomer,Abscisic Acid, (R)-Isomer,Abscisic Acid, (Z,E)-Isomer,Abscissic Acid,Abscissins
D012639 Seeds The encapsulated embryos of flowering plants. They are used as is or for animal feed because of the high content of concentrated nutrients like starches, proteins, and fats. Rapeseed, cottonseed, and sunflower seed are also produced for the oils (fats) they yield. Diaspores,Elaiosomes,Embryos, Plant,Plant Embryos,Plant Zygotes,Zygotes, Plant,Diaspore,Elaiosome,Embryo, Plant,Plant Embryo,Plant Zygote,Seed,Zygote, Plant
D017360 Arabidopsis A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development. Arabidopsis thaliana,Cress, Mouse-ear,A. thaliana,A. thalianas,Arabidopses,Arabidopsis thalianas,Cress, Mouse ear,Cresses, Mouse-ear,Mouse-ear Cress,Mouse-ear Cresses,thaliana, A.,thaliana, Arabidopsis,thalianas, A.
D050976 Basic-Leucine Zipper Transcription Factors A large superfamily of transcription factors that contain a region rich in BASIC AMINO ACID residues followed by a LEUCINE ZIPPER domain. Basic-Leucine Zipper Transcription Factor,GBF bZIP Transcription Factor,bZIP G-Box Binding Factor,bZIP G-Box Binding Factors,bZIP Protein,bZIP Transcription Factor,GBF bZIP Transcription Factors,bZIP Proteins,bZIP Transcription Factors,Basic Leucine Zipper Transcription Factor,Basic Leucine Zipper Transcription Factors,Factor, bZIP Transcription,Protein, bZIP,Transcription Factor, bZIP,Transcription Factors, bZIP,bZIP G Box Binding Factor,bZIP G Box Binding Factors
D018506 Gene Expression Regulation, Plant Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants. Plant Gene Expression Regulation,Regulation of Gene Expression, Plant,Regulation, Gene Expression, Plant
D018525 Germination The initial stages of the growth of SEEDS into a SEEDLINGS. The embryonic shoot (plumule) and embryonic PLANT ROOTS (radicle) emerge and grow upwards and downwards respectively. Food reserves for germination come from endosperm tissue within the seed and/or from the seed leaves (COTYLEDON). (Concise Dictionary of Biology, 1990) Germinations
D029681 Arabidopsis Proteins Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments. Arabidopsis thaliana Proteins,Thale Cress Proteins,Proteins, Arabidopsis thaliana,thaliana Proteins, Arabidopsis

Related Publications

Zenglin Li, and Xiaofeng Luo, and Lei Wang, and Kai Shu
May 2021, Journal of pineal research,
Zenglin Li, and Xiaofeng Luo, and Lei Wang, and Kai Shu
October 2017, Scientific reports,
Zenglin Li, and Xiaofeng Luo, and Lei Wang, and Kai Shu
December 2017, Plant physiology,
Zenglin Li, and Xiaofeng Luo, and Lei Wang, and Kai Shu
September 2015, Plant biology (Stuttgart, Germany),
Zenglin Li, and Xiaofeng Luo, and Lei Wang, and Kai Shu
March 2020, Journal of plant research,
Zenglin Li, and Xiaofeng Luo, and Lei Wang, and Kai Shu
June 2021, The New phytologist,
Zenglin Li, and Xiaofeng Luo, and Lei Wang, and Kai Shu
March 2008, Proceedings of the National Academy of Sciences of the United States of America,
Zenglin Li, and Xiaofeng Luo, and Lei Wang, and Kai Shu
July 2019, Ecology and evolution,
Zenglin Li, and Xiaofeng Luo, and Lei Wang, and Kai Shu
February 2016, Scientific reports,
Zenglin Li, and Xiaofeng Luo, and Lei Wang, and Kai Shu
April 2018, The Plant cell,
Copied contents to your clipboard!