A sensitive specific hemolytic assay for proenzyme C1. 1987

A J Tenner, and M M Frank

The traditional hemolytic assay of the functional activity of C1, the first component of the classical complement pathway, was modified to permit differentiation between proenzyme (unactivated) C1 and the activated state of the enzyme (C1). A two-step assay was developed to quantitate proenzyme C1. The C1 sample to be assayed was first preincubated with C1 inhibitor, a process that specifically inhibits the enzymatic activity of C1 without affecting the subsequent activation of proenzyme C1 by EAC4, a model immune complex. Since the rate of reaction between C1 inhibitor, a serum regulatory protein, and C1 is concentration-dependent, this step is performed at high C1 and C1 inhibitor concentrations. Subsequent dilutions of the sample prevents C1 inhibitor-mediated inactivation of the C1 that is activated during the C1 hemolytic assay. Thus, in the presence of C1 inhibitor, the level of C1 hemolytic activity specifically reflects the activity of proenzyme C1, while in the absence of C1 inhibitor, the hemolytic activity reflects the total activity of C1. Both the absolute and the relative amounts of the proenzyme (unactivated) and activated C1 can thereby be quantitated in most samples. Furthermore, a partially purified C1 inhibitor reagent, easily prepared from serum, was shown to function identically to the purified C1 inhibitor, obviating the need for a multistep isolation procedure for this protein. Using this simple yet sensitive assay to investigate the efficiency of reconstitution of C1 activity from the purified components C1q, C1r, and C1s, we also find evidence for temperature- and concentration-dependent reaction steps in the formation of functional C1.

UI MeSH Term Description Entries
D003166 Complement Activating Enzymes Enzymes that activate one or more COMPLEMENT PROTEINS in the complement system leading to the formation of the COMPLEMENT MEMBRANE ATTACK COMPLEX, an important response in host defense. They are enzymes in the various COMPLEMENT ACTIVATION pathways. Activating Enzymes, Complement,Enzymes, Complement Activating
D003172 Complement C1 The first complement component to act in the activation of CLASSICAL COMPLEMENT PATHWAY. It is a calcium-dependent trimolecular complex made up of three subcomponents: COMPLEMENT C1Q; COMPLEMENT C1R; and COMPLEMENT C1S at 1:2:2 ratios. When the intact C1 binds to at least two antibodies (involving C1q), C1r and C1s are sequentially activated, leading to subsequent steps in the cascade of COMPLEMENT ACTIVATION. C1 Complement,Complement 1,Complement Component 1,C1, Complement,Complement, C1,Component 1, Complement
D003174 Complement C1 Inactivator Proteins Serum proteins that inhibit, antagonize, or inactivate COMPLEMENT C1 or its subunits. Complement 1 Esterase Inhibitors,Complement C1 Inactivating Proteins,Complement C1 Inhibiting Proteins,Complement C1 Inhibitor Proteins,Complement C1r Protease Inhibitor Proteins,Complement C1s Esterase Inhibitor Proteins,Complement Component 1 Inactivator Proteins
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004792 Enzyme Precursors Physiologically inactive substances that can be converted to active enzymes. Enzyme Precursor,Proenzyme,Proenzymes,Zymogen,Zymogens,Precursor, Enzyme,Precursors, Enzyme
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006462 Hemolytic Plaque Technique A method to identify and enumerate cells that are synthesizing ANTIBODIES against ANTIGENS or HAPTENS conjugated to sheep RED BLOOD CELLS. The sheep red blood cells surrounding cells secreting antibody are lysed by added COMPLEMENT producing a clear zone of HEMOLYSIS. (From Illustrated Dictionary of Immunology, 3rd ed) Jerne's Plaque Technique,Hemolytic Plaque Technic,Jerne's Plaque Technic,Hemolytic Plaque Technics,Hemolytic Plaque Techniques,Jerne Plaque Technic,Jerne Plaque Technique,Jernes Plaque Technic,Jernes Plaque Technique,Plaque Technic, Hemolytic,Plaque Technic, Jerne's,Plaque Technics, Hemolytic,Plaque Technique, Hemolytic,Plaque Technique, Jerne's,Plaque Techniques, Hemolytic,Technic, Hemolytic Plaque,Technic, Jerne's Plaque,Technics, Hemolytic Plaque,Technique, Hemolytic Plaque,Technique, Jerne's Plaque,Techniques, Hemolytic Plaque
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A J Tenner, and M M Frank
January 1979, Journal of immunological methods,
A J Tenner, and M M Frank
February 1968, The Journal of biological chemistry,
A J Tenner, and M M Frank
January 1985, Complement (Basel, Switzerland),
A J Tenner, and M M Frank
May 1988, Clinica chimica acta; international journal of clinical chemistry,
A J Tenner, and M M Frank
August 1973, Journal of neurochemistry,
A J Tenner, and M M Frank
February 1985, Thrombosis research,
A J Tenner, and M M Frank
November 1977, Journal of immunology (Baltimore, Md. : 1950),
A J Tenner, and M M Frank
July 1981, Journal of periodontal research,
Copied contents to your clipboard!