Inactivation of yeast nucleotidyl transferase and its effect on the integrity of the aminoacid acceptor end of transfer RNA. 1987

J M del Rio, and C F Heredia

Yeast tRNA nucleotidyl transferase rapidly inactivates (half life c. 2 hr) upon nitrogen starvation of exponentially growing cells. The inactivation does not occur when glucose together with the nitrogen source is removed or when glucose is replaced by ethanol. The transferase activity reappears shortly after replenishment of the nitrogen source and this appearance of the enzymatic activity is blocked by cycloheximide, indicating the need for protein biosynthesis during the process. The nucleotidyl transferase activity is also very low in stationary phase yeast cells. A ten fold decrease in the transferase activity is not paralleled by loss of the integrity of the 3' end of the tRNA chains. It seems that there is a large excess of enzymatic activity over that needed to keep the tRNA chains complete. The observed lack of the 3' end of tRNAs from late stationary phase yeast cannot be accounted for by the observed drop in transferase activity in these cells.

UI MeSH Term Description Entries
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D012316 RNA Nucleotidyltransferases Enzymes that catalyze the template-directed incorporation of ribonucleotides into an RNA chain. EC 2.7.7.-. Nucleotidyltransferases, RNA
D012331 RNA, Fungal Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis. Fungal RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

J M del Rio, and C F Heredia
January 1991, The Italian journal of biochemistry,
J M del Rio, and C F Heredia
September 1971, European journal of biochemistry,
J M del Rio, and C F Heredia
May 1993, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J M del Rio, and C F Heredia
October 1970, Biochemical and biophysical research communications,
J M del Rio, and C F Heredia
March 1993, Proceedings of the National Academy of Sciences of the United States of America,
J M del Rio, and C F Heredia
February 1972, European journal of biochemistry,
Copied contents to your clipboard!