Ginsenoside Rk1 inhibits cell proliferation and promotes apoptosis in lung squamous cell carcinoma by calcium signaling pathway. 2019

Xining An, and Rongzhan Fu, and Pei Ma, and Xiaoxuan Ma, and Daidi Fan
Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University 229 North Taibai Road Xi'an Shaanxi 710069 China xiaoxuanma@nwu.edu.cn fandaidi@nwu.edu.cn +86-29-8830-5118 +86-29-8830-5118.

Ginsenoside Rk1 (Rk1) is a rare saponin extracted from Sun Ginseng (SG) and has been shown to have an anti-tumor effect; however, the potential role of its in lung squamous cell carcinoma remains elusive. In this study, we investigated the anti-proliferative activity and involved mechanism of Rk1 against lung squamous cell carcinoma in vitro and in vivo. First, MTT assay, cell colony formation assay and cell cycle assay showed that Rk1 effectively inhibited cell proliferation and colony formation, and induced cell arrest at G1 phase. Following AV/PI staining, JC-10 staining, Western blot and immunohistochemistry indicated that Rk1 induced caspase-dependent apoptosis. In addition, Rk1 induced ER stress, causing the release of Ca2+, resulting in intracellular calcium and mitochondrial calcium overload. Intracellular calcium overload activated the calpain-caspase-12 and calpain-caspase-7-PARP pathways, while mitochondrial calcium overload caused mitochondrial membrane potential reduced, and the release of cytochrome c. BAPTA-AM (Ca2+ scavengers) and calpeptin (calpain inhibitors) significantly attenuated Rk1-induced apoptosis. Moreover, Rk1 significantly inhibited the growth of SK-MES-1 xenograft tumors with low toxic side effects. In summary, this study for the first time demonstrated that Rk1 had significant antitumor effects against lung squamous cell carcinoma and great potential to serve as a novel anticancer agent.

UI MeSH Term Description Entries

Related Publications

Xining An, and Rongzhan Fu, and Pei Ma, and Xiaoxuan Ma, and Daidi Fan
September 2023, Journal of ginseng research,
Xining An, and Rongzhan Fu, and Pei Ma, and Xiaoxuan Ma, and Daidi Fan
April 2024, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Xining An, and Rongzhan Fu, and Pei Ma, and Xiaoxuan Ma, and Daidi Fan
January 2020, Panminerva medica,
Xining An, and Rongzhan Fu, and Pei Ma, and Xiaoxuan Ma, and Daidi Fan
October 2022, Pathology, research and practice,
Xining An, and Rongzhan Fu, and Pei Ma, and Xiaoxuan Ma, and Daidi Fan
April 2020, European review for medical and pharmacological sciences,
Xining An, and Rongzhan Fu, and Pei Ma, and Xiaoxuan Ma, and Daidi Fan
September 2018, Journal of cellular physiology,
Xining An, and Rongzhan Fu, and Pei Ma, and Xiaoxuan Ma, and Daidi Fan
August 2019, Journal of experimental & clinical cancer research : CR,
Xining An, and Rongzhan Fu, and Pei Ma, and Xiaoxuan Ma, and Daidi Fan
September 2023, Medical oncology (Northwood, London, England),
Xining An, and Rongzhan Fu, and Pei Ma, and Xiaoxuan Ma, and Daidi Fan
February 2023, Molecular and cellular probes,
Xining An, and Rongzhan Fu, and Pei Ma, and Xiaoxuan Ma, and Daidi Fan
November 2023, Experimental cell research,
Copied contents to your clipboard!