Altered antigenicity of human monoclonal antibodies derived from human-mouse heterohybridomas. 1987

J Kan-Mitchell, and K L Andrews, and D Gallardo, and M S Mitchell

We have generated milligram quantities of human monoclonal antibodies (Hu-MAbs) in the ascites of pristane-primed nude mice injected with human-mouse heterohybridomas. After contaminating mouse immunoglobulins were removed by affinity chromatography, an enzyme immunosorbent assay (EIA) was used to measure the concentrations of human immunoglobulins. Ten different partially purified preparations were tested. The titration curves with all 5 IgG Hu-MAbs were unusual, reaching a plateau at a very low apparent maximum concentration of antibody. In contrast, the EIA yielded more usual titration curves and thus apparently more reliable estimates of the concentrations of 4 IgM and 1 IgA monoclonal antibodies. An analogous EIA for the quantitation of mouse IgG monoclonal antibodies also gave accurate estimates. To understand the nature of the discrepancy with human IgG, 5 Hu-MAbs of the 3 classes (2 IgG, 2 pentameric IgM and 1 IgA) were purified to homogeneity for a more detailed analysis. The inability to quantitate the human IgG monoclonal antibodies by EIA was not due to defective molecules, as shown by SDS polyacrylamide gel electrophoresis. The human IgG monoclonal antibodies were found to consist of intact heavy and light chains, as were the IgM and IgA antibodies. The possibility that the human IgG monoclonal antibodies differed antigenically from polyclonal IgG was explored by comparing the concentrations by EIA with the protein concentrations determined by absorbance at 280 nm. This analysis permitted a comparison of the detectability of antigenic determinants on Hu-MAbs with those on polyclonal Ig with goat antibodies to Ig or Ig subclass. The IgG monoclonal antibodies differed from polyclonal IgG in both their heavy and light chains. Goat antiserum monospecific for the gamma chain in fact underestimated the concentration by as much as one hundred-fold. IgM and IgA monoclonal antibodies were less antigenically distinct from their polyclonal counterparts even though their light chains were also underestimated, because goat monospecific antibodies were more efficient at recognizing their heavy chains. The molecular basis for the observed difference in antigenicity is not yet known. These findings have important implications for the analysis of the binding of IgG Hu-MAbs. A direct binding assay with the label directly conjugated to the Hu-MAb should be used in preference to an indirect assay with a labeled detecting antibody to maximize the sensitivity of the assay. The altered antigenicity of IgG Hu-MAbs may also imply decreased immunogenicity when they are given in vivo as carriers for radionuclides or cytotoxic antitumor materials.

UI MeSH Term Description Entries
D007132 Immunoglobulin Isotypes The classes of immunoglobulins found in any species of animal. In man there are nine classes that migrate in five different groups in electrophoresis; they each consist of two light and two heavy protein chains, and each group has distinguishing structural and functional properties. Antibody Class,Ig Isotype,Ig Isotypes,Immunoglobulin Class,Immunoglobulin Isotype,Antibody Classes,Immunoglobulin Classes,Class, Antibody,Class, Immunoglobulin,Classes, Antibody,Classes, Immunoglobulin,Isotype, Ig,Isotype, Immunoglobulin,Isotypes, Ig,Isotypes, Immunoglobulin
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D006041 Goats Any of numerous agile, hollow-horned RUMINANTS of the genus Capra, in the family Bovidae, closely related to the SHEEP. Capra,Capras,Goat
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006825 Hybridomas Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. Hybridoma
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000888 Antibodies, Anti-Idiotypic Antibodies which react with the individual structural determinants (idiotopes) on the variable region of other antibodies. Anti-Antibodies,Anti-Idiotype Antibodies,Antibodies, Internal Image,Antigamma Globulin Antibodies,Antiglobulins,Anti Antibodies,Anti-gamma Globulin Antibodies,Anti Idiotype Antibodies,Anti gamma Globulin Antibodies,Anti-Idiotypic Antibodies,Antibodies, Anti,Antibodies, Anti Idiotypic,Antibodies, Anti-Idiotype,Antibodies, Anti-gamma Globulin,Antibodies, Antigamma Globulin,Globulin Antibodies, Anti-gamma,Globulin Antibodies, Antigamma,Image Antibodies, Internal,Internal Image Antibodies
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

J Kan-Mitchell, and K L Andrews, and D Gallardo, and M S Mitchell
January 1986, Clinical and experimental immunology,
J Kan-Mitchell, and K L Andrews, and D Gallardo, and M S Mitchell
October 1995, Journal of immunological methods,
J Kan-Mitchell, and K L Andrews, and D Gallardo, and M S Mitchell
September 1991, Journal of medical primatology,
J Kan-Mitchell, and K L Andrews, and D Gallardo, and M S Mitchell
January 1995, Methods in molecular biology (Clifton, N.J.),
J Kan-Mitchell, and K L Andrews, and D Gallardo, and M S Mitchell
January 1992, Scandinavian journal of immunology,
J Kan-Mitchell, and K L Andrews, and D Gallardo, and M S Mitchell
April 1988, European journal of immunology,
J Kan-Mitchell, and K L Andrews, and D Gallardo, and M S Mitchell
October 1998, Hybridoma,
J Kan-Mitchell, and K L Andrews, and D Gallardo, and M S Mitchell
January 1994, Human antibodies and hybridomas,
J Kan-Mitchell, and K L Andrews, and D Gallardo, and M S Mitchell
June 1988, Human immunology,
J Kan-Mitchell, and K L Andrews, and D Gallardo, and M S Mitchell
June 1999, Journal of medical primatology,
Copied contents to your clipboard!