Properties of an Escherichia coli rhodanese. 1987

K Alexander, and M Volini

A rhodanese enzyme of less than 20,000 molecular weight has been purified from Escherichia coli. The enzyme is accessible to substrates upon addition of whole cells to standard assay mixtures. This rhodanese has a Stokes radius of 17 A which for a globular protein corresponds to a molecular weight close to 14,000. It undergoes autoxidation to a polymeric form which is probably an inert dimer. Enzyme inactivated by oxidation can be reactivated by millimolar concentrations of cysteine. Steady-state initial velocity measurements indicate that the enzyme catalyzes the transfer of sulfane sulfur by way of a double displacement mechanism with formation of a covalent enzyme-sulfur intermediate. The turnover number for the enzyme-catalyzed reaction, with thiosulfate as donor substrate and cyanide ion as the sulfur acceptor, is 260 s-1. This value corresponds to a catalytic efficiency 60% of that measured for a previously characterized bovine liver enzyme of more than twice the molecular weight. Furthermore, KmCN is 24 mM which is 2 orders of magnitude higher than the value observed previously for the bovine enzyme. Evidence from chemical inactivation studies implicates an essential sulfhydryl group in the enzyme activity. It is proposed that this group is the site of substrate-sulfur binding in the obligatory enzyme-sulfur intermediate. Furthermore, a cationic site important for binding of the donor thiosulfate is tentatively identified from anion inhibition studies. Tests of alternate acceptor substrates indicate that the physiological dithiol, dihydrolipoate, is a more efficient acceptor than cyanide ion for the enzyme-bound sulfur. Of possibly greater physiological significance, it has been found that the enzyme catalyzes the formation of iron-sulfur centers. Other work indicates the E. coli rhodanese is subject to catabolite repression and suggests a physiological role for the enzyme in aerobic energy metabolism.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013466 Sulfurtransferases Enzymes which transfer sulfur atoms to various acceptor molecules. EC 2.8.1. Sulfurtransferase
D013884 Thiosulfate Sulfurtransferase An enzyme that catalyzes the transfer of the planetary sulfur atom of thiosulfate ion to cyanide ion to form thiocyanate ion. EC 2.8.1.1. Rhodanese,Thiosulfate Cyanide Transsulphurase,Thiosulfate Sulphurtransferase,Cyanide Transsulphurase, Thiosulfate,Sulfurtransferase, Thiosulfate,Sulphurtransferase, Thiosulfate,Transsulphurase, Thiosulfate Cyanide

Related Publications

K Alexander, and M Volini
February 1953, Journal of cellular and comparative physiology,
K Alexander, and M Volini
May 1978, Infection and immunity,
K Alexander, and M Volini
May 2002, FEBS letters,
K Alexander, and M Volini
April 2011, Biomolecular NMR assignments,
K Alexander, and M Volini
November 1968, Biochimica et biophysica acta,
K Alexander, and M Volini
May 2023, Antioxidants (Basel, Switzerland),
K Alexander, and M Volini
December 2009, Protein science : a publication of the Protein Society,
K Alexander, and M Volini
September 1970, The Journal of biological chemistry,
K Alexander, and M Volini
April 2009, Journal of bacteriology,
Copied contents to your clipboard!