Comparative evaluation of three methylene dianiline isomers in the bacterial reverse mutation assay, the in vitro gene mutation test, and the in vitro chromosomal aberration test. 2022

Elif Unterberger-Henig
BASF SE5184, Ludwigshafen, Germany.

4,4'-MDA is classified as a genotoxic carcinogen based on numerous in vitro and animal data. The consequential assumption that a safe threshold does not exist is not only applied to 4,4'-MDA but also to its structural isomers and impurities 2,2'- and 2,4'-MDA in the absence of substance-specific data. This constitutes a problem in human risk assessments for all three substances as the inherent risks of 2,2'- and 2,4'-MDA and their contribution as impurities to that of 4,4'-MDA are essentially unknown. A comparative in vitro genotoxicity dataset consisting of the bacterial reverse mutation (Ames) test and the chromosomal aberration test in human lymphocytes (both performed according to the current OECD Guidelines) was generated for all three isomers. Furthermore, an in vitro gene mutation test in Chinese hamster ovary (CHO) cells (HPRT locus assay) was conducted with 2,4'-MDA. The results indicate differences regarding the genotoxic mechanism and potential, respectively, between the three structures and suggest that the no-threshold assumption for 4,4'-MDA may not be appropriate for 2,2'- and 2,4'-MDA.

UI MeSH Term Description Entries
D009152 Mutagenicity Tests Tests of chemical substances and physical agents for mutagenic potential. They include microbial, insect, mammalian cell, and whole animal tests. Genetic Toxicity Tests,Genotoxicity Tests,Mutagen Screening,Tests, Genetic Toxicity,Toxicity Tests, Genetic,Genetic Toxicity Test,Genotoxicity Test,Mutagen Screenings,Mutagenicity Test,Screening, Mutagen,Screenings, Mutagen,Test, Genotoxicity,Tests, Genotoxicity,Toxicity Test, Genetic
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000814 Aniline Compounds Compounds that include the aminobenzene structure. Phenylamine,Phenylamines,Anilines,Compounds, Aniline
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2
D016466 CHO Cells CELL LINE derived from the ovary of the Chinese hamster, Cricetulus griseus (CRICETULUS). The species is a favorite for cytogenetic studies because of its small chromosome number. The cell line has provided model systems for the study of genetic alterations in cultured mammalian cells. CHO Cell,Cell, CHO,Cells, CHO

Related Publications

Copied contents to your clipboard!