Acrylamide-induced sympathetic autonomic neuropathy resulting in pineal denervation. 1987

R E Schmidt, and S B Plurad, and H B Clark

The effect of acrylamide on the sympathetic innervation of the rat pineal gland was examined by using ultrastructural, immunohistological, biochemical, and physiological methods. Separation of sympathetic terminals from perivascular pineocyte processes was facilitated by administration of the false neurotransmitter 5-hydroxydopamine, which preferentially labeled sympathetic terminals, shortly before sacrifice. Administration of acrylamide (50 mg/kg/day, intraperitoneally) for 1 to 2 weeks resulted in the near-total loss of pineal parenchymal perivascular axons and axons intercalated between individual pineocytes. More proximal portions of these sympathetic axons located within the capsule of the pineal gland developed markedly enlarged swellings containing neurofilaments and tubulovesicular elements. The ultrastructural appearance of axons swollen by tubulovesicular elements resembled that of regenerating axons and axons whose regenerative progress had been frustrated. The activity of pineal dopamine-beta-hydroxylase, a noradrenergic marker enzyme confined to sympathetic axons and their terminals and absent in pineocytes, was determined in an attempt to develop a quantitative measure of the extent of sympathetic denervation. The loss of 50% of pineal dopamine-beta-hydroxylase activity underestimated the extent of parenchymal denervation due to the marked engorgement of remaining capsular sympathetic axons by immunoreactive dopamine-beta-hydroxylase. The daily rhythm of pineal serotonin N-acetyltransferase (NATase) activity, which is dependent on the circadian variation in the activity of pineal sympathetic axons, was decreased 90% by chronic acrylamide administration. Pineal NATase activity increased 25- to 50-fold in acrylamide intoxicated rats in which isoproterenol was used to stimulate pineocyte beta-adrenergic receptors directly, which is evidence against a nonspecific toxic effect of acrylamide on pineocytes. Administration of N,N'methylene-bis-acrylamide, a non-neurotoxic analog of acrylamide, was without effect on pineal ultrastructure or NATase activity.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D010870 Pineal Gland A light-sensitive neuroendocrine organ attached to the roof of the THIRD VENTRICLE of the brain. The pineal gland secretes MELATONIN, other BIOGENIC AMINES and NEUROPEPTIDES. Epiphysis Cerebri,Pineal Body,Corpus Pineale,Gland, Pineal,Pineal Bodies,Pineal Glands
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D004299 Dopamine beta-Hydroxylase Dopamine beta-Monooxygenase,Dopamine beta Hydroxylase,Dopamine beta Monooxygenase,beta-Hydroxylase, Dopamine,beta-Monooxygenase, Dopamine
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D006892 Hydroxydopamines Dopamines with a hydroxy group substituted in one or more positions. Hydroxydopamine
D000178 Acrylamides Colorless, odorless crystals that are used extensively in research laboratories for the preparation of polyacrylamide gels for electrophoresis and in organic synthesis, and polymerization. Some of its polymers are used in sewage and wastewater treatment, permanent press fabrics, and as soil conditioning agents.

Related Publications

R E Schmidt, and S B Plurad, and H B Clark
October 2002, Neurobiology of disease,
R E Schmidt, and S B Plurad, and H B Clark
September 1976, Diabetes,
R E Schmidt, and S B Plurad, and H B Clark
December 2002, Diabetes,
R E Schmidt, and S B Plurad, and H B Clark
January 1985, Clinical physiology (Oxford, England),
R E Schmidt, and S B Plurad, and H B Clark
December 1994, Clinical science (London, England : 1979),
R E Schmidt, and S B Plurad, and H B Clark
February 2017, Clinical autonomic research : official journal of the Clinical Autonomic Research Society,
R E Schmidt, and S B Plurad, and H B Clark
June 1991, Journal of the autonomic nervous system,
R E Schmidt, and S B Plurad, and H B Clark
November 2018, The Nurse practitioner,
R E Schmidt, and S B Plurad, and H B Clark
January 1993, Journal of the neurological sciences,
R E Schmidt, and S B Plurad, and H B Clark
December 1982, Naunyn-Schmiedeberg's archives of pharmacology,
Copied contents to your clipboard!